• Title/Summary/Keyword: Hybrid energy systems

Search Result 446, Processing Time 0.022 seconds

The Design of a Hybrid Composite Strut Tower for Improving Impact Resistance and Light-weight (내충격성 향상 및 경량화를 위한 하이브리드 복합재료 스트럿 타워 설계)

  • Lee, Hyun Chul;Oh, Hyun Ju;Kim, Seong Su
    • Composites Research
    • /
    • v.26 no.4
    • /
    • pp.223-229
    • /
    • 2013
  • Hybrid composite strut tower was designed to prevent permanent deformation of upper mount by the impact from the uneven road. When exceeding energy absorption capacity of tire and suspension systems, residual impact is delivered to upper mount. Especially, in case of using high-rigidity suspension system for high driving performance, the conventional strut tower can be easily deformed due to reduction of energy absorption capacity of suspension systems. In this study, optimal design of hybrid composite strut tower which made of back-up metal and carbon fiber reinforced composite was suggested by using finite element analysis, and low velocity impact test was performed to investigate their dynamic characteristics. Also, 3D measuring and ultra c-scanning methods were carried out to diagnose damages in the strut towers.

Formation Strategy of Renewable Energy Sources for High Mountain Off-grid System Considering Sustainability (지속가능성을 고려한 산악지역 독립망 전력시스템의 신재생 에너지원 구성 전략)

  • Ahn, Sung-Hoon;Lee, Kyung-Tae;Bhandari, Binayak;Lee, Gil-Yong;Lee, Caroline Sun-Yong;Song, Chul-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.9
    • /
    • pp.958-963
    • /
    • 2012
  • Characteristics of off-grid hybrid renewable energy sources for high mountain villages are discussed. Considering reliability of electric power generation, Photovoltaic (PV)-wind hybrid and PV-hydro hybrid system are suggested. Connecting two or more villages with these hybrid systems, an extended hybrid off-grid can be formed. Sustainability of entire system is important in design of off-grid system, and income generation of the village people using the electricity should be considered.

Performance Analysis of a Hybrid Desiccant Cooling System for Residential Air Conditioning in the Seoul Region under the Climate Scenarios SSP5 and SSP1 (기후 시나리오 SSP5와 SSP1에서의 2100년 서울 지역에서의 여름철 주택 냉방을 위한 하이브리드 제습 냉방 시스템 성능 분석)

  • YULHO LEE;SUNGJIN PARK
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.6
    • /
    • pp.773-784
    • /
    • 2023
  • In this study, a comparative analysis between an electric heat pump cooling system and a hybrid desiccant cooling system is conducted. Desiccant cooling is a thermal driven system with potentially lower electric power consumption than electric heat pump. Hybrid desiccant cooling system simulation includes components such as a desiccant rotor, direct and indirect evaporative coolers, heat exchangers, fans, and a heat pump system. Using dynamic simulations by climate conditions, house cooling temperatures and power consumption for both systems are analyzed for 16 days period in the summer season under climate scenarios for the year 2100 prediction. The results reveal that the hybrid desiccant cooling system exhibits a 5-18% reduction in electric consumption compared to the heat pump system.

Power control and operation of Hybrid Energy System for Building Micro-Grid (빌딩마이크로그리드시스템용 하이브리드에너지시스템 전력제어 및 운영)

  • Cho, Jea-Hoon;Hong, Won-Pyo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.37-41
    • /
    • 2009
  • In this paper, we propose to research the possibility of using a photovoltaic system and supercapacitor combined with a high speed microturbine. This hybrid energy system work as atand-alone mode or grid-connected mode as it will be a part of building micro-grid. Simple dynamic models of photovoltaic, microturbine systems and supercapacitor banks are proposed. their models are developed by Matlab/Simulink tool. Two important results are carried out to find power control effectiveness in case of with supercapacitor bank and without one. At least, simulation results show the effectiveness on the power control at AC busbar of hybrid energy system as building micro-grid system.

  • PDF

A study on the Interlock Circuit Abnormality of High Voltage System in HEV (하이브리드자동차 고전압 시스템 인터록 회로 이상 시 미치는 영향에 관한 연구)

  • Song, Rak Hyun;Cho, Haeng Muk
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.27-33
    • /
    • 2015
  • Recently, global warming has been accelerated due to air pollution and air pollutants are coming from the exhaust of the ICE vehicles, which are gradually increasing in number globally. That is why all the countries in the world are striving to reduce pollutant emissions of automobiles by strengthening regulations on air pollution. To comply with the regulations, the auto industry came up with hybrid vehicles, which have features of both ICE vehicles and electric vehicles. Hybrid vehicles show improvements in emissions, fuel efficiency, as well as functions as electric vehicles. This study aims to show possible troubles that occur at times of damages in high-voltage systems, and to suggest responsive measures.

Multi-Objective Evaluation for Hybrid Use of Natural Energy in Power System (자연에너지 복합 이용시스템에 대한 다목적 평가)

  • Bae, Sang-Hyun;Lee, Jae-Youn
    • Solar Energy
    • /
    • v.11 no.1
    • /
    • pp.27-40
    • /
    • 1991
  • Research and development works on practical application of natural energy utilization systems involving solar, wind and sea wave energies are under promoting for the purpose of improving the energy consumption structure. These natural energies, made available with the use of relatively simple apparatus, are clean economically efficient and highly effective in the conservation of environment. However, these natural energies also have low energy density, randomness and regional variations. To compensate for these characteristics, hybrid utilization of solar and wind energies is currently under study. The introduction of a plural number of the natural energy hybrid utilization systems into a specific area will affect the economic efficiency, reliability and environmental conservation. Evaluation method of such effects has been examined in this study. The present method consisted of the steps described below. First, available energy was calculated from insolation distribution and wind velocity distribution in the specified area, and then the effect on the configuration of the power system load was obtained. This was followed by the determination of the optimal power dispatch over the specified period and by evaluations in light of economic efficiency, reliability and environmental indices.

  • PDF

Active Page Replacement Policy for DRAM & PCM Hybrid Memory System (DRAM&PCM 하이브리드 메모리 시스템을 위한 능동적 페이지 교체 정책)

  • Jung, Bo-Sung;Lee, Jung-Hoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.5
    • /
    • pp.261-268
    • /
    • 2018
  • Phase Change Memory(PCM) with low power consumption and high integration attracts attention as a next generation nonvolatile memory replacing DRAM. However, there is a problem that PCM has long latency and high energy consumption due to the writing operation. The PCM & DRAM hybrid memory structure is a fruitful structure that can overcome the disadvantages of such PCM. However, the page replacement algorithm is important, because these structures use two memory of different characteristics. The purpose of this document is to effectively manage pages that can be referenced in memory, taking into account the characteristics of DRAM and PCM. In order to manage these pages, this paper proposes an page replacement algorithm based on frequently accessed and recently paged. According to our simulation, the proposed algorithm for the DRAM&PCM hybrid can reduce the energy-delay product by around 10%, compared with Clock-DWF and CLOCK-HM.

Experimental Characteristics Examination of a Hybrid-Type Supercapacitor (하이브리드형 슈퍼커패시터의 실험적 특성 규명)

  • Jeong, Kyuwon;Shin, Jaeyoul
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.4
    • /
    • pp.307-311
    • /
    • 2016
  • Several types of supercapacitors have been developed for energy storage systems. Among them, the hybrid type has advantages such as a large capacitance per weight compared with the electric double-layer capacitator type. In this study, constant current charging and discharging tests were conducted for recently developed hybrid-type supercapacitors. Based on the experimental results, the capacitance and equivalent series resistance were obtained. The capacitance was larger than the designed capacitance at a low current but became small at a high current. In addition, the capacitance depended on the cell voltage. These results can be used to design an energy storage system.

Transient Performance of a Hybrid Electric Vehicle with Multiple Input DC-DC Converter

  • Nashed, Maged N.F.
    • Journal of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.230-238
    • /
    • 2003
  • Electric vehicles (EV) demands for greater acceleration, performance and vehicle range in pure electric vehicles plus mandated requirements to further reduce emissions in hybrid electric vehicles (HEV) increase the appeal for combined on-board energy storage systems and generators. And the power electronics plays an important role in providing an interface between fuel cells (FC) and loads. This paper deals with a multiple input DC-DC power converter devoted to combine the power flowing of multi-source on energy systems. The multi-source is composed of (i) FC system as a prime power demands, (ii) super capacitor banks as energy storage devices for high and intense power demands, (iii) superconducting magnetic energy storage system (SMES), (iv) multiple input DC-DC power converter and (v) a three phase inverter-fed permanent magnet synchronous motor as a drive. In this system, It is used super capacitor banks and superconducting magnetic energy replaces from the battery system. The modeling and transient performance simulation is effective for reducing transient influence caused by sudden charge of effective load. The main purpose of power electronic converters is to convert the DC power output from the fuel cell and other to a suitable AC voltage, which can be connected to electric loads directly (PMSM). The fuel cell and other output is connected to the DC-DC converter, which regulates the DC link voltage.

Hybrid Type X-Ray Generator Using EDLC for Fluoroscopy X-Ray System (EDLC를 이용한 X선 투시촬영장치용 하이브리드 X선 제너레이터)

  • Seo, Young-Min;Hong, Soon-Chan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.9
    • /
    • pp.89-98
    • /
    • 2014
  • A diagnostic fluoroscopy X-ray system uses a 32kW or greater X-ray generator for obtaining real-time moving images and high-resolution images. Fluoroscopy X-ray systems have to use a high-capacity AC power source to perform long-time low-power fluoroscopy and short-time high-power spot exposure. In this paper, we propose a hybrid type X-ray generator for fluoroscopy X-ray system which can perform fluoroscopy and spot exposure with a low-capacity AC power source and an energy storage device. The characteristics of energy storage devices are compared and each energy storage device is modelled to equivalent circuit. And the characteristics of available energy are analyzed as a function of output voltage and power. A 32kW class hybrid X-ray generator with EDLC as an energy storage device for fluoroscopy X-ray system was constructed, and its validity was verified by means of simulations and experiments.