• 제목/요약/키워드: Hybrid electrical vehicle

검색결과 217건 처리시간 0.029초

Multi-Objective Optimal Predictive Energy Management Control of Grid-Connected Residential Wind-PV-FC-Battery Powered Charging Station for Plug-in Electric Vehicle

  • El-naggar, Mohammed Fathy;Elgammal, Adel Abdelaziz Abdelghany
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.742-751
    • /
    • 2018
  • Electric vehicles (EV) are emerging as the future transportation vehicle reflecting their potential safe environmental advantages. Vehicle to Grid (V2G) system describes the hybrid system in which the EV can communicate with the utility grid and the energy flows with insignificant effect between the utility grid and the EV. The paper presents an optimal power control and energy management strategy for Plug-In Electric Vehicle (PEV) charging stations using Wind-PV-FC-Battery renewable energy sources. The energy management optimization is structured and solved using Multi-Objective Particle Swarm Optimization (MOPSO) to determine and distribute at each time step the charging power among all accessible vehicles. The Model-Based Predictive (MPC) control strategy is used to plan PEV charging energy to increase the utilization of the wind, the FC and solar energy, decrease power taken from the power grid, and fulfil the charging power requirement of all vehicles. Desired features for EV battery chargers such as the near unity power factor with negligible harmonics for the ac source, well-regulated charging current for the battery, maximum output power, high efficiency, and high reliability are fully confirmed by the proposed solution.

SVDD기법을 이용한 하이브리드 전기자동차 충-방전시스템의 고장검출 알고리듬 (Fault Detection Algorithm of Charge-discharge System of Hybrid Electric Vehicle Using SVDD)

  • 나상건;양인범;허훈
    • 한국소음진동공학회논문집
    • /
    • 제21권11호
    • /
    • pp.997-1004
    • /
    • 2011
  • A fault detection algorithm of a charge and discharge system to ensure the safe use of hybrid electric vehicle is proposed in this paper. This algorithm can be used as a complementary way to existing fault detection technique for a charge and discharge system. The proposed algorithm uses a SVDD technique, which additionally utilizes two methods for learning a large amount of data; one is to incrementally learn a large amount of data, the other one is to remove the data that does not affect the next learning using a new data reduction technique. Removal of data is selected by using lines connecting support vectors. In the proposed method, the data processing speed is drastically improved and the storage space used is remarkably reduced than the conventional methods using the SVDD technique only. A battery data and speed data of a commercial hybrid electrical vehicle are utilized in this study. A fault boundary is produced via SVDD techniques using the input and output in normal operation of the system without using mathematical modeling. A fault detection simulation is performed using both an artificial fault data and the obtained fault boundary via SVDD techniques. In the fault detection simulation, fault detection time via proposed algorithm is compared with that of the peak-peak method. Also the proposed algorithm is revealed to detect fault in the region where conventional peak-peak method is never able to do.

PHEV(Plug in Hybrid Electric Vehicle)의 클러치 구동 시스템을 위한 BLDC 모터의 위치제어기 (Position Controller for Clutch Drive System of PHEV(Plug in Hybrid Electric Vehicle))

  • 진용신;신희근;김학원;목형수;조관열
    • 전력전자학회논문지
    • /
    • 제17권2호
    • /
    • pp.166-173
    • /
    • 2012
  • Plug-in Hybrid Electric Vehicle is driven by the engine, the primary traction motor, and the secondary auxiliary motor generating the electric power for battery charging. Secondary auxiliary motor should be connected to the engine or separated from the engine by the clutch system. This paper presents the position controller of the BLDC motor for the clutch system of Plug-in Hybrid Electric Vehicle. The BLDC motor can be applied to the clutch system in spite of it's low accuracy of the position control due to high gear ratio between the clutch and the motor. Since the attachment and the detachment between the motor and the engine should be carried out within 0.3 seconds, the position controller with fast acceleration and deceleration is implemented. For the torque control with braking operation for the BLDC motor, the modified bipolar PWM method with low current ripple compared to the conventional unipolar PWM is presented. The position control performance of the BLDC motor for the clutch system is verified through the simulation and experiments.

하이브리드 전기자동차용 2차전지 충방전 모니터링 시스템 설계 (Design of Charge and Discharge Monitoring System for Secondary Batteries of Hybrid Electric Vehicle)

  • 이준하;이강호;최종호
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권8호
    • /
    • pp.157-161
    • /
    • 2010
  • 대도시 대기오염의 대부분이 자동차 배출가스에 의해서 이루어지고 있으며, 세계적으로 환경오염에 대한 규제수준이 점차 강화되고 있어 저공해의 환경 친화적인 자동차의 개발과 보급이 요구되고 있으며, 고유가 시대에서 이미 국내 외에서 개발 양산중인 하이브리드 자동차의 급속한 시장 확대가 예상된다. 하이브리드 자동차에서 전기에너지를 저장하는 배터리는 가장 중요한 구성요소 중 하나이며, 하이브리드 자동차용 배터리(전기에너지를 저장하는 2차 전지)는 순간적으로 에너지를 방출하는 특성 즉 고출력 특성이 일차적으로 요구되며, 자동차 부품으로서의 신뢰성과 내구성이 확보되어야 한다. 따라서 본 논문에서는 하이브리드 자동차에 장착되는 2차 전지의 충 방전 상태를 안정적으로 모니터링 하는 시스템과 전지의 충 방전 성능을 극대화할 수 있고 충 방전 제어가 가능한 실시간 충 방전 모니터링 시스템을 제안하였다. 논문에서 새롭게 제안한 감지부와 제어부로 구성되는 충 방전 시스템은 하드웨어 및 소프트웨어 모듈과 실시간으로 셀 배터리의 충 방전 상태를 효율적으로 제어할 수 있으며 데이터베이스와 통신모듈을 기반으로 원격제어가 가능한 시스템이다.

규칙기반 알고리즘을 이용한 수소연료전지/배터리 하이브리드 철도차량 모델링 (Modeling of Hybrid Railway Vehicles with Hydrogen Fuel-Cell/Battery using a Rule-Based Algorithm)

  • 오윤기;한별;오용국;류준형;이교범
    • 전기전자학회논문지
    • /
    • 제24권2호
    • /
    • pp.610-618
    • /
    • 2020
  • 본 논문에서는 규칙기반 알고리즘을 이용한 수소연료전지/배터리 하이브리드 철도차량 모델링을 제시한다. 모터의 운전영역에 따른 토크 곡선을 계산하여 견인 시스템의 구동 전력을 결정하고 철도차량의 각 운전 모드에 적용하여 전기 시스템을 모델링 한다. 전기 시스템의 전력은 규칙기반 알고리즘을 이용한 에너지 관리시스템(Energy Management System, EMS)으로 결정한다. 배터리의 충전상태(State Of Charge, SOC)에 따라 운전 영역을 세분화하여 수소 소비량을 효율적으로 관리한다. 제안하는 철도차량 모델링의 타당성은 MATLAB/Simulink 시뮬레이션을 통해 검증한다.

전기자동차 보급 전망에 따른 배전계통에서의 영향 평가 (Influence Evaluation of Electric Vehicle Load on Distribution Systems by the penetration rate of Electric Vehicle)

  • 김철우;한승호;송택호;정문규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.256-257
    • /
    • 2011
  • The development for Eco-friendly cars has been expanded as the concern about environmental pollution and a rise in gas prices. The Electric Vehicle(EV) and Plug in Hybrid Electric Vehicle(PHEV) are generally connected on distribution power systems to charge the traction batteries. The growing number of EV/PHEVs could have a effect on distribution power systems and result in overload of power utilities and power quality problems. In order to reduce the adverse effect on distribution power systems, the influence of electric vehicle loads should be evaluated. In this paper, the influence of electric vehicle loads is evaluated by using OpenDSS(Open Source Distribution System Simulator) according to the penetration rate of electric vehicle.

  • PDF

Development of an Advanced Hybrid Energy Storage System for Hybrid Electric Vehicles

  • Lee, Baek-Haeng;Shin, Dong-Hyun;Song, Hyun-Sik;Heo, Hoon;Kim, Hee-Jun
    • Journal of Power Electronics
    • /
    • 제9권1호
    • /
    • pp.51-60
    • /
    • 2009
  • Hybrid Electric Vehicles (HEVs) utilize electric power as well as a mechanical engine for propulsion; therefore the performance of HEV s can be directly influenced by the characteristics of the Energy Storage System (ESS). The ESS for HEVs generally requires high power performance, long cycle life and reliability, as well as cost effectiveness. So the Hybrid Energy Storage System (HESS), which combines different kinds of storage devices, has been considered to fulfill both performance and cost requirements. To improve operating efficiency, cycle life, and cold cranking of the HESS, an advanced dynamic control regime with which pertinent storage devices in the HESS can be selectively operated based on their status was presented. Verification tests were performed to confirm the degree of improvement in energy efficiency. In this paper, an advanced HESS with improved an Battery Management System (BMS), which has optimal switching control function based on the estimated State of Charge (SOC), has been developed and verified.

하이브리드 차량을 위한 하이브리드 전동식 압축기 모터 드라이브 시스템 개발 (Motor Drive System Development of Hybrid Electric Air-con Compressor for HEV)

  • 정태욱;박성준;김성일;홍정표;윤철호;차현록;김형모
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1075-1076
    • /
    • 2007
  • The HEV (Hybrid Electrical Vehicle) becomes commercialized recently because of high fuel efficiency and low air pollution. The highest output power system except the traction motor is an air conditioner compressor in HEV system. The full or hybrid electric compressor is applied for HEV. The general HEC (Hybrid Electric Compressor) requires the half power motor and drive system of the full electric compressor because the rated output power of motor drive system is designed to charge the minimum cooling capacity at the time of idle stop. Therefore, this hybrid electric is more economical and practical solution. In this paper, we studied about the motor drive system of hybrid electric compressor for HEV. The applied voltage specification is 42 V, an IPMSM (Interior Permanent Magnet Synchronous Motor) is designed and applied as the compressor drive motor.

  • PDF

연료전지 발전시스템을 이용한 축소형 철도차량 적용 선행연구 (The Feasibility Study on Small-scale Prototype Electric Railway Vehicle Application using Fuel Cell Generation System)

  • 정노건;장진영;창상훈;김재문
    • 전기학회논문지
    • /
    • 제63권1호
    • /
    • pp.184-190
    • /
    • 2014
  • Fuel cell power system, unlike conventional energy sources, converts chemical energy into electrical energy through electrochemical reaction of hydrogen and oxygen. In recent years, railway field as well as mobile fuel cell power system is being studying actively with development of hydrogen storage technologies. This paper presents the feasibility study on small-scale prototype electric railway vehicle application using fuel cell generation system. it is confirmed that proposed fuelcell-battery hybrid system shows good response characteristic about speed and torque based on design of parameter on system. Also as results of response for proposed system modeling, it show that powering mode and braking mode of system is controlled by switching devices of converters.

연료전지 하이브리드 자동차에 대한 퍼지논리 기반 에너지 운용전략 (Fuzzy Logic-Based Energy Management Strategy for FCHEVs)

  • 안현식;이남수
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권12호
    • /
    • pp.713-715
    • /
    • 2005
  • The work in this paper presents development of fuzzy logic-based energy management strategy for a fuel cell hybrid electric vehicle. In order for the fuel cell system to overcome the inherent limitation such as slow response time and low fuel economy especially at the low power region, the battery system has come to compensate for the fuel cell system. This type of hybrid configuration has many advantages, however, the energy management strategy between power sources is essentially required. For the optimal power distribution between the fuel cell system and the battery system, a fuzzy logic-based energy management strategy is proposed. In order to show the validity and the robustness of suggested strategy, some simulations are performed for the standard drive cycles.