• Title/Summary/Keyword: Hybrid drive

Search Result 306, Processing Time 0.027 seconds

Design of a Hybrid fuzzy PI Speed Controller For Improving The Load Characteristic of a BLDC Motor (BLDC 모터의 부하특성기선을 위한 하이브리드형 퍼지 PI 속도 제어기)

  • Oh, Joon-Tae;Kim, Yong;Baek, Soo-Hyun;Cho, Gyu-Man;Lee, Gyu-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.228-231
    • /
    • 2002
  • This paper describes the design and experimental verification of a hybrid fuzzy control system for a BLDC motor drive. The principle of the proposed control system is to use a PI controller which performs satisfactorily in most cases, while a fuzzy controller, which is ready to take over the PI controller. is used when severe perturbations occur. Thus. the PI and fuzzy controller can be managed to take advantage of their positive attributes.

  • PDF

Vehicle Stability Control for a 4WD HEV using Regenerative Braking and Electronic Brake force Distribution (회생제동과 EBD를 이용한 4WD HEV의 차량 안정성 제어)

  • Kim Donghyun;Kim Hyunsoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.166-173
    • /
    • 2005
  • A vehicle stability control logic for 4WD hybrid electric vehicle is proposed using the regenerative braking of the rear motor and electronic brake force distribution module. Performance of the stability control logic is evaluated for J-turn and single lane change. It is found from the simulation results that the regenerative braking at rear motor is able to provide improved stability compared with the vehicle performance without my stability control. Additional improvement can be achieved by applying the regenerative braking plus electronic brake farce distribution control. It is expected that the regenerative braking offers additional improvement of the fuel economy as well as the vehicle stability control.

Manufacturing Prototype and Characteristics Analysis of HB Type Linear Stepping Motor with Longitudinal Flux Machine (자속종방향 HB형 선형 스텝핑 전동기의 시작기 제작 및 특성해석)

  • 원규식;김동희;이상호;오홍석
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.10
    • /
    • pp.507-513
    • /
    • 2003
  • Nowadays, the necessity of linear position control motors have been increased in the various fields of the automatic control system. In the recently, the position control motor have disadvantaged in the efficiency and economical view since it require a conversion equipments such as belt and gear in order to convert rotary to linear motion. On the contrary, the hybrid linear stepping motor(HLSM) of linear motion digital actuator has a direct drive method that do not need mechanical conversion equipments. Therefore, the HLSM is better advantaged in the efficiency and economical view than a rotary stepping motor. In this paper, we have designed an optimum tooth shape and a permanent magnet value between the mover teeth by the 2D finite element method(FEM) to develop the HLSM with longitudinal flux machine(LFM) type, and calculated the thrust force and normal force. And we have manufactured the prototype of it. and have experimented the thrust force and the dynamic thrust characteristics of it.

Design of a Fuzzy P+ID controller for brushless DC motor speed control (BLDCM 의 속도 제어를 위한 퍼지 P+ID 제어기 설계)

  • Kim, Young-Sik;Lee, Chang-Goo;Kim, Sung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2161-2163
    • /
    • 2002
  • The PID type controller has been widely used in industrial application doc to its simply control structure, ease of design and inexpensive cost. However control performance of the PID type controller suffers greatly from high uncertainty and nonlinearity of the system, large disturbances and so on. This paper presents a hybrid fuzzy logic proportional plus conventional integral derivative controller (Fuzzy P+ID). In comparison with a conventional PID controller, only one additional parameter has to be adjusted to tune the Fuzzy P+ID controller. In this case, the stability of a system remains unchanged after the PID controller is replaced by the Fuzzy P+ID controller without modifying the original controller parameters. Finally, the proposed hybrid Fuazy P+ID controller is applied to BLDC motor drive. Simulation results demonstrated that the control performance of the proposed controlled is better than that of the conventional controller.

  • PDF

Development of a Hybrid Haptic Master System Without Using a Force Sensor (힘 센서를 이용하지 않는 혼합형 햅틱 마스터 시스템의 개발)

  • Park, Gi-Hwan;Bae, Byeong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1308-1316
    • /
    • 2001
  • A hybrid type master system is proposed to take the advantage of the link mechanism and magnetic levitation mechanism without using a force sensor. Two different types of electromagnetic actuators, moving coil type and moving magnet types are used to drive the master system which is capable of 4-DOF actuation. It is designed that the rotation motions about x-y axis are decoupled and the whole system is represented by simple dynamic equations. The force reflection is achieved by using the simple relation between the force and applied current and position. The simulation and experimental results are presented to show its performance.

A New Approach to the High Efficiency of Hydraulic Excavator (유압식 굴삭기의 고효율 화에 관한 새로운 접근)

  • Lee, Y.B.
    • Journal of Drive and Control
    • /
    • v.11 no.4
    • /
    • pp.39-45
    • /
    • 2014
  • With recent oil price increases, the fuel efficiency of hydraulic excavators has become a serious issue. Researchers have considered weight lightening by high pressurization in order to improve the efficiency of the excavator and pump controlled actuation (PCA) and to reduce pressure loss of hybrid and valves using mechanical inertia. However, high pressurization is not very effective because the excavator operates at a low speed; a hybrid is inefficient because little accumulated inertial energy is accumulated; and PCA is ineffective because control precision and responsibility are low. In this study, a method to minimize air and gas in hydraulic oil has been presented as a simple and new way to increase hydraulic efficiency.

Sensorless Vector Control of Induction Motor with HAI Controller (HAI 제어기에 의한 유도전동기의 센서리스 벡터제어)

  • Lee, Jung-Chul;Lee, Hong-Gyun;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.2
    • /
    • pp.73-79
    • /
    • 2005
  • This paper is proposed hybrid artificial intelligent (HAI) controller based on the vector controlled induction motor drive system. The hybrid combination of fuzzy control and neural network will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed speed estimation of induction motor using a closed-loop state observer. The rotor position is calculated through the stator flux position and an estimated flux value of rotation reference frame. A closed-loop state observer is implemented to compute the speed feedback signal. The results of analysis prove that the proposed control system has strong robustness to rotor parameter variation, and has good steady-state accuracy and transitory response.

Design of the Hybrid Optical Pickup Actuator by Numerical Simulation of Heat Transfer (열전달 수치해석에 의한 하이브리드 광픽업 액추에이터의 설계)

  • Shin, Su-Ho;Lee, Jin-Won;Cheong, Young-Min;Kim, Kwang
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.798-800
    • /
    • 2003
  • Recently, in optical storage device technical trends, the size of optical drive is slimmer to adopt notebook computer and the power of actuator is higher to achieve the high transfer rate. However, these trends of optical disc drives tend to increase the temperature of the actuator part, it causes some problems on the performance of optical parts - the resonance frequency of the actuator is down to lower band and the objective lens, coil and magnet are easily damaged. In this study, to overcome these thermal problems, the numerical simulations of heat transfer were performed. As the result of simulations, the thermal characteristic of the hybrid actuator is better than the previous design. And, it shows the good dynamic performance in experiment.

  • PDF

Heat Inducible Expression of the CDC70 Gene Under the Control of Heat Shock Element in Saccharomyces Cerevisiae

  • Lee, Seok-Jae;Jahng, Kwang-Yeop;Lee, Young-Hoon;Chae, Keon-Sang
    • Journal of Microbiology
    • /
    • v.33 no.3
    • /
    • pp.196-200
    • /
    • 1995
  • In order to express the CDC70 gene of Saccharomyces cerevisiae by heat shock, we have designed heat inducibe hybrid promoters using the Drosophila melanogaster heat shock elements (HSEs). A 220 bp-long upstream fragment of the D. melanogaster hsp70 gene comprised of four HSEs was placed upstream of the putative proximal TATA box of the CDC70 gene. Hybrid promoters containing different fusion joints were tested for their ability to drive the CDC70 gene expression by heat shock. The results showed that the HSEs of D. melanogaster conferred the heat-induced CDC70 gene expression, but the heat inducibility was much lower than that in D. melanogaster.

  • PDF

Alternating Current Input LED Lighting Control System using Fuzzy Theory

  • Lee, Jae-Kyung;Yim, Jae-Hong
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.4
    • /
    • pp.214-220
    • /
    • 2021
  • In this study, we constructed several scenarios that are required for LED lighting, and we designed and implemented an LED lighting control system to operate these scenarios to confirm their behavior. An LED lighting control system is a hybrid control board that is designed by combining LED controllers and SMPS, consisting of an AC/DC power supply part that converts AC 220 V into DC 12 V, and a drive and control part that controls the scenario and color of the LED module. Conventional LED light controllers have an input power of DC 12 V, so when using the input AC 220 V, the SMPS must be connected to the LED light controller. To eliminate this inconvenience, a hybrid LED lighting control system was configured to combine LED lighting controllers and SMPS into one control system. Furthermore, we designed a control system to represent the most appropriate color according to the input of the distance and illumination using a fuzzy control system to conduct computer simulations.