• Title/Summary/Keyword: Hybrid cooling system

Search Result 139, Processing Time 0.025 seconds

Optimal Design for Indoor Thermal Environment based on CFD Simulation and Genetic Algorithms (CFD 연성해석과 유전자 알고리즘을 이용한 실내 열환경 최적설계에 관한 연구)

  • 김태연;이윤규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.2
    • /
    • pp.111-120
    • /
    • 2004
  • The optimal design method of indoor thermal environment using CFD coupled simulation and genetic algorithms (GA) is developed in this study. CFD could analyze the thermal environment considering the distribution of temperature, velocity, etc. in a room. Therefore, It would be appropriate to use CFD for the optimal design method considering their distribution. In this paper, the optimal design means the most appropriate boundary conditions of the room among the conditions where the design target of indoor therm environment is achieved. Two step optimal indoor thermal environment design method is proposed. It includes the GA for searching the optimal indoor thermal environment design. To examine the performance of this method, the optimal design of hybrid ventilation system, which uses the natural cross ventilation and the radiation-cooling panel is conducted. The optimal design which satisfies the design target (thermal comfort, minimum cooling load, minimum vertical temperature difference) is found using two step optimal design method.

High Thermal Conductive Natural Rubber Composites Using Aluminum Nitride and Boron Nitride Hybrid Fillers

  • Chung, June-Young;Lee, Bumhee;Park, In-Kyung;Park, Hyun Ho;Jung, Heon Seob;Park, Joon Chul;Cho, Hyun Chul;Nam, Jae-Do
    • Elastomers and Composites
    • /
    • v.55 no.1
    • /
    • pp.59-66
    • /
    • 2020
  • Herein, we investigated the thermal conductivity and thermal stability of natural rubber composite systems containing hybrid fillers of boron nitride (BN) and aluminum nitride (AlN). In the hybrid system, the bimodal distribution of polygonal AlN and planar BN particles provided excellent filler-packing efficiency and desired energy path for phonon transfer, resulting in high thermal conductivity of 1.29 W/mK, which could not be achieved by single filler composites. Further, polyethylene glycol (PEG) was compounded with a commonly used naphthenic oil, which substantially increased thermal conductivity to 3.51 W/mK with an excellent thermal stability due to facilitated energy transfer across the filler-filler interface. The resulting PEG-incorporated hybrid composite showed a high thermal degradation temperature (T2) of 290℃, a low coefficient of thermal expansion of 26.4 ppm/℃, and a low thermal distortion parameter of 7.53 m/K, which is well over the naphthenic oil compound. Finally, using the Fourier's law of conduction, we suggested a modeling methodology to evaluate the cooling performance in thermal management system.

A study on the processing of phenolic composite reinforced with hybrid of PAN based/Rayon based carbon fabrics using FBG sensor system (FBG 센서를 이용한 PAN계/Rayon계 탄소 직물 하이브리드 복합재료의 성형 공정 연구)

  • Kim Jae Hong;Park Jong Kyu;Kang Tae Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.159-162
    • /
    • 2004
  • The processing of phenolic composite reinforced with hybrid of PAN based/Rayon based carbon fabrics using FBG sensor and thermocouple was studied. Once the composite is cured, the reflection spectrum from the FBG sensor shifted the center wavelength with an increase in the temperature. Also, the change in the form of the reflection spectrum obtained during the cooling process of the cure cycle was caused by the thermal shrinkage. During the curing process, uniform distribution of the temperature profile was observed throughout the sample.

  • PDF

Characteristic Analysis and Test of IPMSM for e-4WD of the Hybrid Electric Vehicle (HEV용 e-4WD 구동을 위한 매입형 영구자석 동기전동기의 특성해석 및 시험)

  • Jung, Soo-Jin;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.777-784
    • /
    • 2016
  • In this paper, the performance design and analysis for an Interior Permanent-Magnet Synchronous Motor (IPMSM) that will be used as a traction motor in the e-4WD system of hybrid SUV(Sports Utility Vehicle) and RV(Recreational Vehicle), are investigated using finite element method. In order to improve the accuracy of design, the tolerances of parts and assemblies as well as the material properties of permanent magnet, stator, rotor and winding etc. are considered under the conditions similar to real driving state of motor. Both no load performance test and maximum load performance test, in which real driving state and cooling condition have been considered, are also implemented via proto sample build to verify the validity of motor's performance design.

Transportable House with Hybrid Power Generation System (하이브리드 발전 시스템을 적용한 이동식 하우스)

  • Mi-Jeong Park;Jong-Yul Joo;Eung-Kon Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.205-212
    • /
    • 2023
  • In the modern society, the extreme weather caused by climate change has brought about exceptional damage in succession over the world due to the use of fossil fuels, and infectious diseases such as COVID-19 worsen the quality of human life. It is urgently necessary to reduce green-house gas and use new renewable energy. The global environmental pollution should be decreased by reducing the use of fossil fuels and using new renewable energy. This paper suggests a system which can function for the environment of four seasons, safety and communication, through the photovoltaic power-based intelligent CCTV, internet and WiFi, and cooling and heating systems, and can optimally manage power, through the real-time monitoring of the production and the consumption of the photovoltaic power. It suggests a hybrid generation system supporting diesel generation without discontinuation in the case of emergency such as system power outage caused by cold waves, typhoons and natural disasters in which the photovoltaic power generating system cannot be used.

Dynamic Responses of the TRU-loaded HYPER System

  • Kim, T.K.;Oh, Se-Kee;Kim, Y.H.;Park, W.S.
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2000.11a
    • /
    • pp.127-137
    • /
    • 2000
  • Accelerator Driven System (ADS) named HYPER(Hybrid Power Extraction Reactor) is being developed for the transmutation of nuclear waste in Korea Atomic Energy Research Institute(KAERI). The concept of the HYPER is using 1GeV proton to drive a subcritical core. HYPER system is believed to have much more stable dynamics than the critical system in terms of neutronics. However, the HYPER system is supposed to have some drawbacks for the cooling system accidents. Loss of Flow(LOF) and Loss of Heat Sink (LOHS) cause a strong damage. As results, those accidents would stop the power production in the critical system. On the other hand, the negative reactivity feedback could not stop the HYPER system because the HYPER is driven by an accelerator rather than reactivity.(omitted)

  • PDF

Hybrid Photovoltaic/Thermal Solar System with Pulsating Heat Pipe Type Absorber (진동형 히트파이프 흡열판이 결합된 하이브리드 태양광/열 시스템)

  • Kim, Chang-Hee;Jeon, Dong-Hwan;Kong, San-Gun;Kim, Jong-Su
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2148-2153
    • /
    • 2007
  • The electricity conversion-efficiency of solar cell for commercial application is about 6-15%. More than 85% of the incoming solar energy is either reflected or absorbed as heat energy. Consequently, the working temperature of the photovoltaic cells increases considerably after prolonged operations and the cell's efficiency drops significantly. PV/T refers to the integration of a PV module and a solar thermal collector in a single piece of equipment. By cooling the PV module with a fluid steam like air or water, the electricity yield can be improved. At the same time, the heat pick-up by the fluid can be to support space heating or service hot-water systems. In this study, a pulsating heat pipe solar heat collector was combined with single-crystal silicon photovoltaic cell in hybrid energy-generating unit that simultaneously produced low temperature heat and heat and electricity. This experiment was investigating thermal and electrical efficiency for evaluation of a PV/T system.

  • PDF

A study for a Performance analysis of Hybrid heat pump Air conditioning system (복합열원형 히트펌프 냉난방 시스템의 성능분석에 관한 연구)

  • Lim, Hyun-Mook;Park, Hee-Moon;Cho, Soo;Sung, Uk-Joo;Park, Jin-Hoon;Park, Tae-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1373-1378
    • /
    • 2009
  • This study is aiming comparison and analization between efficiency of hybride air conditioning system which uses low temperature water under dam and air and EHP(Electric Heat Pump). The experimental was carried out with air cooling tests for EHP system having 80HP and composition heat pump system. P-i diagram of both systems and COP was used to derive schemetic and calcuations. As results of the tests, hybride system has 1.4 time higher efficiency coefficient.

  • PDF

A Study on Application of On/Off Type EGR and Optimal EGR Rate for Gasoline-Hybrid Engine (하이브리드용 가솔린 엔진에서 On/Off 방식 EGR적용 및 최적 EGR 율에 관한 연구)

  • Park, Cheol-Woong;Choi, Young;Kim, Chang-Gi
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.143-150
    • /
    • 2008
  • EGR(exhaust gas recirculation) is an attractive means of improving the fuel economy of spark ignition engines, as it offers the benefits of charge dilution (lower pumping and cooling losses) while allowing stoichiometric fuelling to be retained for applications using the three-way catalysts. However, the occurrence of excessive cyclic variation with high EGR normally prevents substantial fuel economy improvements from being achieved in practice. Therefore, the optimum EGR rate in Gasoline-Hybrid engine should be carefully determined in order to achieve low fuel consumption and low exhaust emission. In this study, 2 liters gasoline engine with E-EGR system was used to investigate the effects of EGR on fuel economy, combustion stability, engine performance and exhaust emissions. EGR tolerance with load variation was found to be more sensitive than with rpm variation. With optimal EGR rates, the fuel consumption was improved by 5.5% while a combustion stability was guaranteed.

Demonstration project on utilization of solar thermal energy on Hybrid Cooling and Heating system (태양열 이용 Hybrid냉난방시스템 실증연구)

  • Mun, Jong-Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.363-372
    • /
    • 2005
  • 최근 고유가상황 및 에너지소비가 증대되는 사회적 분위기와 환경적 변화에 힘입어 대체에너지기술개발에 대한 절실한 대책마련이 중요시 되고있다. 기후변화협약의 발효로 환경에너지에 대한 새로운 인식의 필요로 에너지체제의 변환이 촉구되어지고 있으며 이에 따른 환경친화적 에너지자원을 이용한 신 재생에너지개발에 대한 연구개발기술이 관심을 받고 있다. 현재 사용중인 화석연료는 환경오염 및 지구의 온난화 현상 등 심각한 공해문제를 야기시키고 있는 반면에 태양에너지와 같은 청정에너지의 개발은 환경오염방지와 친환경에너지자원의 활용이라는 점에서 관심이 대상이 되고 있고 특히, 우리나라의 경우 에너지수입 의존율이 97%로 높은 상황에서 국가에너지대책을 수립하고 해외수입에너지 의존율을 최소화시키기 위하여 가히 필수적인 상황이다. 따라서, 본 실증연구사업(태양열 이용 Hybrid냉난방시스템 실증연구)은 태양열 집열기에서 생산된 저온의 $20\sim30^{\circ}C$의 승온된 양질의 열원을 히트펌프 증발기 열원으로 이용 히트펌프의 압축동력이 상대적으로 작아져 기존 히트펌프 시스템에서의 성적계수(COP)를 높여 주는 효과를 기대할 수 있고, 특히 하절기 복사량이 많은 시기에는 $50\sim60^{\circ}C$ 정도로 승온되어진 중 고온수를 직접 온수탱크로 이동시켜 필요수요처에 공급함으로써 이에 따른 에너지절감효과를 기대할 수 있다. 구축된 태양열 이용 하이브리드(Hybrid)냉난방시스템은 계절별, 설비별 특성을 적절히 활용하여 연평균 집열기 효율은 70%수준으로 유지하면서, 계절별 성적계수는 '4'수준을 목표로 하여 추진되었으며, 그간, 태양열 이용 보급분야의 실용화는 주로 건물의 급탕용 온수생산의 수준에 머물렀으나 이 단계를 극복한 건물의 냉 난방 및 급탕을 위한 태양열 및 공기열원을 활용한 하이브리드(Hybrid)냉난방 시스템 구축하였다. 아울러, 태양열 이용 하이브리드 냉난방 히트펌프 시스템 실증 실험은 유가상승과 신재생에너지에 대한 국가적 분위기 고취로 어느때 보다도 개발기술의 상용화 및 실용화적 측면의 염두와 태양열 이용 Hybrid냉난방 시스템의 효율향상과 저가화를 통해 기술의 경제성과 신뢰성을 확보하여 태양열 이용 시스템의 보급활성화를 목표로 하고 있다.

  • PDF