• Title/Summary/Keyword: Hybrid computational aeroacoustics

Search Result 5, Processing Time 0.021 seconds

Efficient Computation of Turbulent Flow Noise at Low Mach Numbers Via Hybrid Method (하이브리드기법을 이용한 저마하수 난류소음의 효율적 전산해석)

  • Seo, Jung-Hee;Moon, Young-J.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.814-821
    • /
    • 2007
  • A hybrid method is presented for efficient computation of turbulent flow noise at low Mach numbers. In this method, the turbulent flow field is computed by incompressible large eddy simulation (LES), while the acoustic field is computed with the linearized perturbed compressible equations (LPCE) derived in this study. Since LPCE is computed on the rather coarse acoustic grid with the flow variables and source term obtained by the incompressible LES, the computational efficiency of calculation is greatly enhanced. Furthermore, LPCE suppress the instability of perturbed vortical mode and therefore secure consistent and stable acoustic solutions. The proposed LES/LPCE hybrid method is applied to three low Mach number turbulent flow noise problems: i) circular cylinder, ii) isolated flat plate, and iii) interaction between cylinder wake and airfoil. The computed results are closely compared with the experimental measurements.

On the computation of low-subsonic turbulent pipe flow noise with a hybrid LES/LPCE method

  • Hwang, Seungtae;Moon, Young J.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.48-55
    • /
    • 2017
  • Aeroacoustic computation of a fully-developed turbulent pipe flow at $Re_{\tau}=175$ and M = 0.1 is conducted by LES/LPCE hybrid method. The generation and propagation of acoustic waves are computed by solving the linearized perturbed compressible equations (LPCE), with acoustic source DP(x,t)/Dt attained by the incompressible large eddy simulation (LES). The computed acoustic power spectral density is closely compared with the wall shear-stress dipole source of a turbulent channel flow at $Re_{\tau}=175$. A constant decaying rate of the acoustic power spectrum, $f^{-8/5}$ is found to be related to the turbulent bursts of the correlated longitudinal structures such as hairpin vortex and their merged structures (or hairpin packets). The power spectra of the streamwise velocity fluctuations across the turbulent boundary layer indicate that the most intensive noise at ${\omega}^+$ < 0.1 is produced in the buffer layer with fluctuations of the longitudinal structures ($k_zR$ < 1.5).

Simulation of Trailing Edge Scattering Using Linearized Euler Equations with Source terms (CFD/CAA Hybrid 기법을 이용한 뒷전에서 음향파의 산란모사)

  • Park, Yong-Hwan;Bin, Jong-Hoon;Cheong, Cheol-Ung;Lee, Soo-Gab
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.7
    • /
    • pp.18-25
    • /
    • 2005
  • In this study, the main focus is the simulation of acoustic wave scattering in trailing edge and the analysis of the generation mechanism of instability wave by the interaction of trailing edge, shear flow and initial disturbance. The numerical algorithm is based on CFD/CAA hybrid method with high-order computational aeroacoustic method. It is found that steady mean flow gradient terms play a crucial role on the generation of instability wave through the comparison of simulations of Simple Linearized Euler Equation and Full Linearized Euler Equation. Through the comparison with the results of Full Navier-Stokes Equation, it is reasonable and efficient to use the Full Linearized Euler Equation in the initial generation mechanism of the instability wave near the trailing edge.

Time Domain Prediction and Analysis of Low Frequency Noise from Wind Turbine using Hybrid Computational Aeroacoustics (CAA) Method (복합 전산 공력음향학(CAA) 방법을 이용한 시간영역 풍력터빈 저주파수 소음 예측과 분석)

  • Lee, Gwang-Se;Cheong, Cheolung;Kim, Hyung-Taek;Joo, Won-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.5
    • /
    • pp.369-376
    • /
    • 2013
  • Using Lowson's acoustic analogy, low frequency noise of a wind turbine (WT) is predicted in time domain and the noise sources contributing to the low frequency noise is analyzed. To compute averaged pressure distribution on blades of the WT as noise source, XFOIL is utilized. The blade source domain is divided into several segments along the span direction to compute force exerted on air surrounding the blade segments, which is used as input for noise prediction. The noise sources are decomposed into three terms of force fluctuation, acceleration and velocity terms and are analyzed to investigate each spectral contribution. Finally, predicted spectra are compared with measured low frequency noise spectrum of a wind turbine in operation. It is found that the force fluctuation component contributes strongly in low frequency range with increasing wind speed.

Aerodynamic noise reduction of fan motor unit of cordless vacuum cleaner by optimal designing of splitter blades for impeller (임펠라 스플리터 날개 최적 설계를 통한 무선진공청소기 팬 모터 단품의 공력 소음 저감)

  • Kim, Kunwoo;Ryu, Seo-Yoon;Cheong, Cheolung;Seo, Seongjin;Jang, Cheolmin;Seol, Hanshin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.524-532
    • /
    • 2020
  • In this study, noise radiated from a high-speed fan-motor unit for a cordless vacuum cleaner is reduced by designing splitter blades on the existing impeller. First of all, in order to investigate the flow field through a fan-motor unit, especially impeller, the unsteady incompressible Reynolds-Averaged Navier-Stokes (RANS) equations are numerically solved by using computational fluid dynamic technique. With predicted flow field results as input, the Ffowcs Williams-Hawkings (FW-H) integral equation is solved to predict aerodynamic noise radiated from the impeller. The validity of the numerical methods is confirmed by comparing the predicted sound pressure spectrum with the measured one. Further analysis of the predicted flow field shows that the strong vortex is formed between the impeller blades. As the vortex induces the loss of the flow field and acts as an aerodynamic noise source, supplementary splitter blades are designed to the existing impeller to suppress the identified vortex. The length and position of splitter are selected as design factors and the effect of each design factor on aerodynamic noise is numerically analyzed by using the Taguchi method. From this results, the optimum location and length of splitter for minimum radiated noise is determined. The finally selected design shows lower noise than the existing one.