• 제목/요약/키워드: Hybrid compensation

검색결과 166건 처리시간 0.026초

Real-time hybrid testing using model-based delay compensation

  • Carrion, Juan E.;Spencer, B.F. Jr.
    • Smart Structures and Systems
    • /
    • 제4권6호
    • /
    • pp.809-828
    • /
    • 2008
  • Real-time hybrid testing is an attractive method to evaluate the response of structures under earthquake loads. The method is a variation of the pseudodynamic testing technique in which the experiment is executed in real time, thus allowing investigation of structural systems with time-dependent components. Real-time hybrid testing is challenging because it requires performance of all calculations, application of displacements, and acquisition of measured forces, within a very small increment of time. Furthermore, unless appropriate compensation for time delays and actuator time lag is implemented, stability problems are likely to occur during the experiment. This paper presents an approach for real-time hybrid testing in which time delay/lag compensation is implemented using model-based response prediction. The efficacy of the proposed strategy is verified by conducting substructure real-time hybrid testing of a steel frame under earthquake loads. For the initial set of experiments, a specimen with linear-elastic behavior is used. Experimental results agree well with the analytical solution and show that the proposed approach and testing system are capable of achieving a time-scale expansion factor of one (i.e., real time). Additionally, the proposed method allows accurate testing of structures with larger frequencies than when using conventional time delay compensation methods, thus extending the capabilities of the real-time hybrid testing technique. The method is then used to test a structure with a rate-dependent energy dissipation device, a magnetorheological damper. Results show good agreement with the predicted responses, demonstrating the effectiveness of the method to test rate-dependent components.

Compensation techniques for experimental errors in real-time hybrid simulation using shake tables

  • Nakata, Narutoshi;Stehman, Matthew
    • Smart Structures and Systems
    • /
    • 제14권6호
    • /
    • pp.1055-1079
    • /
    • 2014
  • Substructure shake table testing is a class of real-time hybrid simulation (RTHS). It combines shake table tests of substructures with real-time computational simulation of the remaining part of the structure to assess dynamic response of the entire structure. Unlike in the conventional hybrid simulation, substructure shake table testing imposes acceleration compatibilities at substructure boundaries. However, acceleration tracking of shake tables is extremely challenging, and it is not possible to produce perfect acceleration tracking without time delay. If responses of the experimental substructure have high correlation with ground accelerations, response errors are inevitably induced by the erroneous input acceleration. Feeding the erroneous responses into the RTHS procedure will deteriorate the simulation results. This study presents a set of techniques to enable reliable substructure shake table testing. The developed techniques include compensation techniques for errors induced by imperfect input acceleration of shake tables, model-based actuator delay compensation with state observer, and force correction to eliminate process and measurement noises. These techniques are experimentally investigated through RTHS using a uni-axial shake table and three-story steel frame structure at the Johns Hopkins University. The simulation results showed that substructure shake table testing with the developed compensation techniques provides an accurate and reliable means to simulate the dynamic responses of the entire structure under earthquake excitations.

하이브리드 필름을 이용한 비틀린 네마틱 액정 모드의 필름보상 연구 (Film Compensation of Twisted Nematic LC mode using Hybrid Film)

  • 김성수;황성한;강훈;이명훈;이승희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.390-391
    • /
    • 2007
  • We have studied improvement of light leakage of twisted nematic liquid crystal display (TN-LCD) in dark state using the hybrid aligned compensation film made of rod-like LC. When the voltage is applied properly to the TN-LCD, the director tilts up but LC director on the substrate don't tilts up due to surface anchoring energy of the LC cell. Accordingly, LC director from surface to middle LC of TN -LCD become hybrid state such as hybrid aligned film. Consequently, in this paper we achieve wide viewing angle performances of TN mode using developed hybrid aligned film which especially decreases light leakage at vertical direction in dark state.

  • PDF

가변 속도 드라이버 부하에 대한 순시 전력 보상을 이용한 복합형 전력 필터의 설계와 시뮬레이션 (A Design and Simulation of Hybrid Power Filter for ASD Loads Based on Instantaneous Power Compensation Theory)

  • 조진호
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.385-390
    • /
    • 2000
  • This paper deals with the design and simulation of the hybrid power filter to compensate reactive power and harmonic components of nonlinear load. Control target is a 3-phase diode full bridge rectifier with L-R-C nonlinear load, this load is assumed adjustable speed driver(ASD). The hybrid filter consists of a shunt active filter, shunt passive filters and series inductors. Control algorithm is based on instantaneous power compensation theory proposed by H.Akagi and etc. The result from simulation shows the hybrid filter is superior than other filters on the point of compensation performance and low cost. The PSCAD/EMTDC 3.0 is used as simulation tools.

  • PDF

2상 하이브리드 스테핑 모터의 벡터 제어 시 초기 각 오차 및 토크 리플 보상 (Compensation of Initial Position Error and Torque Ripple in Vector Control of Two-phase Hybrid Stepping Motors)

  • 김도현;김상훈
    • 전력전자학회논문지
    • /
    • 제27권6호
    • /
    • pp.481-488
    • /
    • 2022
  • This study proposes compensation methods for the initial position error and torque ripple in vector control of two-phase hybrid stepping motors. Stepping motors have an asymmetrical structure due to misalignment, such as the eccentricity generated by the manufacturing and assembly process. When vector control is applied using the position information measured by an incremental encoder attached to the rotor shaft of such stepping motors, the following problems occur. First, an initial position error occurs during the forced excitation process for the initial rotor position alignment. Second, torque ripple corresponding to the mechanical rotation frequency is generated. In this study, these non-ideal phenomena that occur in vector control of the stepping motor are analyzed, and compensation methods are proposed to eliminate them. The validity of the proposed initial position error and torque ripple compensation methods is verified through experiments on a two-phase hybrid stepping motor drive system.

Analysis of delay compensation in real-time dynamic hybrid testing with large integration time-step

  • Zhu, Fei;Wang, Jin-Ting;Jin, Feng;Gui, Yao;Zhou, Meng-Xia
    • Smart Structures and Systems
    • /
    • 제14권6호
    • /
    • pp.1269-1289
    • /
    • 2014
  • With the sub-stepping technique, the numerical analysis in real-time dynamic hybrid testing is split into the response analysis and signal generation tasks. Two target computers that operate in real-time may be assigned to implement these two tasks, respectively, for fully extending the simulation scale of the numerical substructure. In this case, the integration time-step of solving the dynamic response of the numerical substructure can be dozens of times bigger than the sampling time-step of the controller. The time delay between the real and desired feedback forces becomes more striking, which challenges the well-developed delay compensation methods in real-time dynamic hybrid testing. This paper focuses on displacement prediction and force correction for delay compensation in the real-time dynamic hybrid testing with a large integration time-step. A new displacement prediction scheme is proposed based on recently-developed explicit integration algorithms and compared with several commonly-used prediction procedures. The evaluation of its prediction accuracy is carried out theoretically, numerically and experimentally. Results indicate that the accuracy and effectiveness of the proposed prediction method are of significance.

Hybrid Atmospheric Compensation in Free-Space Optical Communication

  • Wang, Tingting;Zhao, Xiaohui
    • Journal of the Optical Society of Korea
    • /
    • 제20권1호
    • /
    • pp.13-21
    • /
    • 2016
  • Since the direct-gradient (DG) method uses the Shack-Hartmann wave front sensor (SH-WFS), based on the phase-conjugation principle, for atmospheric compensation in free-space optical (FSO) communication, it cannot effectively correct high-order aberrations. While the stochastic parallel gradient descent (SPGD) can compensate the distorted wave front, it requires more calculations, which is sometimes undesirable for an FSO system. A hybrid compensation (HC) method is proposed by properly using the DG method and SPGD algorithm to improve the performance of FSO communication. Simulations show that this method can well compensate wave-front aberrations and upgrade the coupling efficiency with few computations, preferable correction results, and rapid convergence rate.

퍼지 보상을 이용한 로봇 매니퓰레이터의 위치/힘제어 (Position/Force Control of Robotic Manipulator with Fuzzy Compensation)

  • 심귀보
    • 한국지능시스템학회논문지
    • /
    • 제5권3호
    • /
    • pp.36-51
    • /
    • 1995
  • An approach to robot hybrid position/force control, which allows force manipulations to be realized without overshoot and overdamping while in the presence of unknown environment, is given in this paper. The manin idea is to used dynamic compensation for known robot parts and fuzzy compensation for unknown environment so as to improve system performance. The fuzzy compensation is implemented by using rule based fuzzy approach to identify the unknown environment. The establishment of proposed control system consists of following two stages. First, similar to the resovled acceleration control method, dynamic compensation and PD control based on known robot dynamics, kinematics and estimated environment stiffness is introduced. To avoid overshoot the whole control system is constructed with overdamping. In the second stage, the unknown environment stiffness is identified by using fuzzy reasoning, where the fuzzy compensation rules are obtained priori as the expression of the relationship betweenenvironment stiffness and system. Based on the simulation result, comparison between cases with or without fuzzy identifications are given, which illustrate the improvement achieced.

  • PDF

양면 LCC 보상 회로를 가진 무선 전력 충전기용 공진 컨버터의 설계 (Design of the Resonant Converter with a Double Sided LCC Compensation Circuit for Wireless Charger.)

  • 부반빈;트란덕홍;최우진
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2015년도 전력전자학술대회 논문집
    • /
    • pp.321-322
    • /
    • 2015
  • The aim of this paper is to propose a design method for the double-sided LCC compensation circuit for 6.6kW electric vehicle (EVs) wireless charger. The analysis and comparison with several compensation topologies such as SS, SP, PS, PP and the hybrid LCC compensation is presented. It has been found that the hybrid LCC compensation has superior performance in comparison with other topologies. The design procedure for the EV charger is presented and the PSIM simulation results are provided.

  • PDF

독립형 소형 태양광/풍력 복합발전시스템의 출력안정화를 위한 보조 전력보상장치개발에 관한 연구 (The Auxiliary Power Compensation Unit for Stand-Alone Photovoltaic/Wind Hybrid Generation System)

  • 박세준;윤정필;강병복;윤형상;차인수;임중열
    • 한국태양에너지학회 논문집
    • /
    • 제24권3호
    • /
    • pp.47-54
    • /
    • 2004
  • Photovoltaic energy and wind energy are highly dependent on the season, time and extremely intermittent energy sources. Because of these reasons, in view of the reliability the photovoltaic and the wind power generation system have many problems(energy conversion, energy storage, load control etc.) comparing with conventional power plant. In order to solve these existing problems, hybrid generation system composed of photovoltaic(500W) and wind power system(400W) was suggested. But, hybrid generation system cannot always generate stable output due to the varying weather condition. So, the auxiliary power compensation unit that uses elastic energy of spiral spring was added to hybrid generation system for the present study. It was partly confirmed that hybrid generation system was generated a stable outputs by spiral spring was continuously provided to load.