• Title/Summary/Keyword: Hybrid collector

Search Result 66, Processing Time 0.029 seconds

Performance Comparison of a Fabric Filter System with Centrifugal Force and a Conventional Fabric Filter System (원심력이 적용된 여과포집진장치와 기존 집진장치의 성능비교)

  • Kim Sang-Do;Park Young-Ok;Kang Yong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.6
    • /
    • pp.739-748
    • /
    • 2004
  • A hybrid dust-collector combining a fabric filter with centrifugal force was developed to enhance the performance of the conventional fabric filter systems and its performances were evaluated to compare to that of the existing dust collector. The pressure drop rapidly increased with increasing the elapsed time and the face velocity in two filtration systems. But the increasing ratio of a hybrid dust-collector compare to the existing dust collector was lower. This results were confirmed from the performance such as cleaning interval, residual pressure drop and dust loading rate. The overall collection efficiency of the hybrid dust-collector was more than 99.6% and this showed a improvement of 0.6~2% than that of the existing dust collector. Especially, the fractional collection efficiency at the particle size of around 1${\mu}{\textrm}{m}$ is about 4% higher than that of the existing dust collector.

Study on the Thermal Performance of a Solar Assisted Heat Pump System with a Hybrid Collector (태양열/공기열 복합 집열기를 가지는 하이브리드 히트펌프 시스템의 열성능에 관한 연구)

  • DO, KYU HYUNG;CHOI, BYUNG-IL;HAN, YONG-SHIK;KIM, MYUNGBAE;KIM, TAEHOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.2
    • /
    • pp.182-191
    • /
    • 2016
  • In the present work, a solar assisted heat pump (SAHP) system with a hybrid collector was analyzed. For this, a simplified thermodynamic model was developed. Based on the proposed model, the heat transfer rate, COP, and the annual operating hour of the SAHP system were estimated. The effect of the variation of system design parameters on the performance of the system was also examined. From the results, the performance was improved with increasing the effectiveness of heat exchangers and decreasing the difference between the evaporation temperature and the outlet brine temperature of the hybrid collector loop. Finally, the performance of SAHP system with a hybrid collector was compared with that of conventional serial and parallel SAHP systems. The SAHP system with a hybrid collector was substantially better than a series system and slightly worse than a parallel system for both the yearly averaged heat transfer rate and COP. However, the annual operating hour of the SAHP system with a hybrid collector was much better than that of a parallel system.

Ultrasonic Welding Technology for Solar Thermal Collector

  • Kim, Sung-Wook;Chun, Chang-Keun;Kim, Sook-Hwan
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.221-225
    • /
    • 2009
  • A solar thermal collector is a solar collector specifically intended to collect heat: that is, to absorb sunlight to provide heat. A flat plate is the most common type of solar thermal collector, and is usually used as a solar hot water panel to generate solar hot water. A flat plate collector consists basically of an insulated metal box with a glass or a plastic cover and a dark-colored copper absorber plate. Solar radiation is absorbed by the copper absorber plate and transferred to water that circulates through the collector in copper tubes. Ultrasonic welding is an industrial technique whereby high-frequency ultrasonic acoustic vibrations are locally applied to work pieces being held together under pressure to create a solid-state weld. In this study, we developed solar collector ultrasonic welding machine with digital controlled power supply and tested various welding conditions such as welding pressure, welding amplitude, welding speed. Welding speed was considered in 2~12m/min. The width of ultrasonic welds was increased with welding amplitude by 2.2~2.5mm. The fracture load of ultrasonic welds showed 20% higher than domestic products.

  • PDF

Design of high speed InAlGaAs/InGaAs HBT structure by Hybrid Monte Carlo Simulation (Hybrid Monte Carlo 시뮬레이션에 의한 고속 InAlGaAs/InGaAs HBT의 구조 설계)

  • 황성범;김용규;송정근;홍창희
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.3
    • /
    • pp.66-74
    • /
    • 1999
  • InAlGaAs/InGaAs HBTs with the various emitter junction gradings(xf=0.0-1.0) and the modified collector structures (collector- I;n-p-n, collector-II;i-p-n) are simulated and analyzed by HMC (Hybrid Monte Carlo) method in order to find an optimum structure for the shortest transit time. A minimum base transit time($ au$b) of 0.21ps was obtainsed for HBT with the grading layer, which is parabolically graded from $x_f$=1.0 and xf=0.5 at the emitter-base interface. The minimum collector transit time($\tau$c) of 0.31ps was found when the collector was modified by inserting p-p-n layers, because p layer makes it possible to relax the electric field in the i-type collector layer, confining the electrons in the $\Gamma$-valley during transporting across the collector. Thus InAlGaAs/InGaAs HBT in combination with the emitter grading($x_f$=0.5) and the modified collector-III showed the transit times of 0.87 psec and the cut-off frequency (f$\tau$) of 183 GHz.

  • PDF

A Literature Review on Hybrid PV/Thermal Air Collector in terms of its Design and Performance (공기식 PVT 컬렉터의 디자인 및 성능에 관한 연구 동향 분석 연구)

  • Kim, Jin-Hee;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.3
    • /
    • pp.30-41
    • /
    • 2014
  • PV/Thennal combined system is a solar energy device that uses photovoltaic module as thermal absorption plate, producing thermal energy as well as electricity which can be utilized in buildings. The system removes heat from PV module through air or liquid and its efficiency will vary dependant on the thermal medium. The heat as the forms of hot air or hot water can be utilized for building use, like space heating and hot water. A significant amount of research and development on hybrid PV/thermal(PVT) collectors has been carried out. This study reviews literature on the research of air-based hybrid PVT collectors in terms of their design and energy performance.

Energy Performance Assessment Study of Prismatic Solar Hybrid Collector System (Prismatic Solar Hybrid Collector 시스템의 에너지 성능 평가에 관한 연구)

  • Park, J.U.;Kim, K.S.;Lee, E.J.;Chung, M.
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.2
    • /
    • pp.51-58
    • /
    • 2003
  • PSHC(Prismatic Solar Hybrid Collector) is a passive solar system composed of prismatic acrly glazing, glazing and ventilating fan. This PSHC system is applied to effectively reduce heating ventilation load as well as lighting load. But so far no method appraising thermal performance of this PSHC system has been developed yet. To assess thermal performance of the PSHC system, a prototype PSHC experimental facility and TRNSYS subroutine type-205 model have been developed in Korea Institute of Energy Research (KIER). The results indicated that l)TRNSYS empirical model of PSHC has been properly modeled with actual performance data, 2)a more reliable source of weather data such as NASA and KIER weather station have been also obtained, and therefore, 3)the annual energy performance of PSHC could be assessed based on this proposed TRNSYS model.

Performance Evaluation of a Hybrid Dust Collector for Removal of Airborne Dust in Urban Railway Tunnels (도시철도 터널 미세먼지 제거용 하이브리드형 집진장치의 성능평가)

  • Woo, Sang Hee;Kim, Jong Bum;Jang, Hong Ryang;Kwon, Soon Bark;Yook, Se-Jin;Bae, Gwi-Nam
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.4
    • /
    • pp.433-439
    • /
    • 2017
  • Urban railway tunnels are polluted by resuspension of deposited bottom dust or newly generated wear dust. A hybrid type dust collector consisting of a baffle and an electrostatic precipitator was developed to remove these types of airborne dust when trains are running in the tunnel. Since dust collection efficiency of the hybrid dust collector is inversely proportional to the airflow rate, the relationship between airflow rate and dust collection efficiency was experimentally investigated for two baffle models. Collection efficiencies for dust larger than $0.5{\mu}m$ for the hybrid dust collector model A1, operated at 3.4 m/s, were greater than 30%; those for the hybrid dust collector model A2, operated at 4.7 m/s, were higher than 20%. When the applied voltage was 13 kV, the amounts of $PM_{10}$ collected with model A1 and model A2 dust collectors were estimated at $253{\mu}g$ and $242{\mu}g$ per hour, respectively.

Evaluation on Performance of Hybrid Heating System with Solar Collector of Thermosyphon Tube Type (열사이폰관형 태양열집열기를 주열원으로 하는 하이브리드 난방시스템 성능 평가)

  • Chun, Tae-Kyu;Yang, Young-Joon
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.356-361
    • /
    • 2012
  • Recently, even though the researches on renewable energy like geothermal, wind, solar energy have been performed widely, its use-rate in total energy is still low. This study was carried out to investigate the performance of hybrid heating system, which consisted of solar collector of thermosyphon tube type and X-L pipe boiler. Especially, new type of solar collector was tried and compared with double tube type and, futhermore, performance and safety on X-L pipe boiler were investigated. As the results, efficiency of solar collector of thermosyphon tube type was higher 20.7% than that of double tube type, mainly due to its structural characteristics. It was also confirmed that temperature of special heat medium used X-L pipe boiler rose up about 20% rapidly in comparison with that of pure water.

A Study on Thermal Storage Performance and Characteristics of Daily Operation of a Hybrid Solar Air-Water Heater (복합형 태양열 가열기의 일일 운전 특성 및 축열 성능에 관한 연구)

  • Choi, Hwi-Ung;Rokhman, Fatkhur;Yoon, Jung-In;Son, Chang-Hyo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.3
    • /
    • pp.73-79
    • /
    • 2015
  • In this study, a thermal storage performance and characteristics of daily operation were investigated when the air and the liquid were heated simultaneously by a hybrid solar air-water heater that can make hot water as well as heated air. The hybrid solar air-water heater is kind of a flat plate solar collector that can make hot water and heated air by installing air channel beneath absorber plate of traditional flat plate solar collector for hot water. As a result of daily operation, maximum water temperature reached in a thermal storage was shown $44^{\circ}C$ on 73kg/h of air mass flow rate and about $40^{\circ}C$ on 176kg/h of air mass flow rate. Thus, the necessity of heating water in thermal storage by operating only liquid side was confirmed when the temperature of liquid in thermal storage is lower than we need. In case of efficiency investigated on daily operation, the thermal efficiency of the liquid side was decreased with increment of the inlet liquid temperature and decrement of the solar radiation, but efficiency of the air side was increased with increment of inlet liquid temperature difference as the traditional solar air heater. Total thermal efficiency of the collector was shown from 65.85% to 78.23% and it was decreased with increment of the inlet liquid temperature and decrement of solar radiation same as the traditional system.

A Study on the Operating Characteristics of Solar Collecting System in Solar Thermal/Geothermal Hybrid System with Facade Integrated Solar Collector (Facade 일체형 태양열 집열기를 갖는 태양열/지열 하이브리드 시스템의 태양열 집열시스템 작동특성 연구)

  • Baek, Nam-Choon;Lee, Jin-Kook;Yu, Chang-Kyun;Yoon, Eung-Sang;Yoon, Jong-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.5
    • /
    • pp.69-76
    • /
    • 2010
  • In this study, the solar thermal and geo-source heat pump(GSHP) hybrid system for heating and cooling of Zero Energy Solar House(ZESH) was analyzed by experiment. The GSHP in this hybrid system works like as aback-up device for solar thermal system. This hybrid system was designed and installed for Zero Energy Solar House (KIER ZeSH) in Korea Institute of Energy Research. The purpose of this study is to find out that this system is optimized and operated normally for the heating load of ZeSH. The analysis was conducted as followings ; - the thermal performance of facade integrated solar collector - the on/off characteristics of solar system and GSHP - the contribution of solar thermal system. - the performance of solar thermal and ground source heat pump system respectively. - the meet of thermal load (space and water heating load). This experimental study could be useful for the optimization of this system as well as its application in house. This hybrid system could be commercialized for the green home if it is developed to a package type.