• Title/Summary/Keyword: Hybrid ceramic

Search Result 263, Processing Time 0.027 seconds

Nanostructured Bulk Ceramics (Part III. Carbon Nanotube Ceramics)

  • Han, Young-Hwan;Mukherjee, Amiya K.
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.541-544
    • /
    • 2009
  • In Part III, the paper will show that an alumina-carbon nanotube-niobium nanocomposite produced fracture toughness values that are several times higher than that of pure nanocrystalline alumina. It was possible to take advantage of both fiber-toughening and ductile-metal toughening in this investigation.

Hybrid Water/Wastewater Treatment Process of Membrane and Photocatalyst (분리막 및 광촉매의 혼성 정수/하수 처리 공정)

  • Park, Jin Yong
    • Membrane Journal
    • /
    • v.28 no.3
    • /
    • pp.143-156
    • /
    • 2018
  • In this review article, hybrid water/wastewater treatment processes of membrane and photocatalyst were summarized from papers published in various journals. It included (1) membrane photoreactor (MPR), (2) fouling control of a membrane coupled photocatalytic process, (3) photocatalytic membrane reactors for degradation of organic pollutants, (4) integration of photocatalysis with membrane processes for purification of water, (5) hybrid photocatalysis and ceramic membrane filtration process for humic acid degradation, (6) effect of $TiO_2$ nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration, (7) hybrid photocatalysis/submerged microfiltration membrane system for drinking water treatment, (8) purification of bilge water by hybrid ultrafiltration and photocatalytic processes, and (9) Hybrid water treatment process of membrane and photocatalyst-coated polypropylene bead.

Mechanical Behavior of $Al_2O_3$ Dispersed CFRP Hybrid Composites at Room and Cryogenic Temperature

  • Manwar Hussain;Choa, Yong-Ho;Koichi Niihara
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.390-394
    • /
    • 1999
  • Al2O3 particles were dispersed into carbon fiber reinforced epoxy composites to fabricate hybrid epoxy based composites. Interface behavior and mechanical properties of these hybrid composites were studied at room and liquid nitrogen temperature and liquid nitrogen temperature and the results were compared with the those of carbon fiber reinforced composites to investigate their applicability at room and cryogenic temperature. Young's modulus in-perpendicular to fiber direction and interlaminar shear strength at room temperature and the thermal contraction down to cryhogenic temperature were improved significantly by the addition of AL2O3 filler into the epoxy matrix. The effect of Al2O3 particle addition on mechanical properties were discussed.

  • PDF

Preparation and Properties of Inorganic-organic Hybrid $Li^+$ Ion Conductor by Sol-gel Process

  • Nishio, Keishi;Miyazawa, Tsutomu;Watanabe, Yuichi;Tsuchiya, Toshio
    • The Korean Journal of Ceramics
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • Inorganic-organic hybrid Li$^+$ ion conductors were prepared by the sol-gel process. Tetramethyl orthosilicate (TMOS), polyethylene glycol 200 (PEG$_200$) and lithium bis (trifluoro-methylsulfony) imide were used as raw materials and $H_2O$ was used as a solvent. Hybrid Li$^+$ ion conductor prepared by the sol-gel process showed very high ion conductivities of log${\sigma}_R.T$(S/cm)=-3.73, log${\sigma}_60$(S/cm)=-3.00 at room temperature and $60^{\circ}C$, respectivery. Decomposition voltage was 3.1 V.

  • PDF

Study of a hybrid process combining ozonation and ceramic membrane for drinking water treatment (I) : manganese removal (정수처리를 위한 전오존-세라믹 막여과 조합공정에 관한 연구(I) : 망간 제거 중심)

  • Jin, Kwang Ho;Lim, Jae Lim;Lee, Kyung Hyuk;Wang, Chang Gun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.6
    • /
    • pp.633-640
    • /
    • 2008
  • In this research, the $3.6m^3/day$ scale pilot plant consisting preozonation, coagulation, flocculation, and ceramic membrane processes was operated for long term period to evaluate the validity of ceramic membrane filtration process for treating lake water containing high concentration manganese. The higher concentration of dissolved manganese($Mn^{2+}$) was effectively oxidized to the bigger insoluble colloidal manganese ($MnO^2$) by 1~2 mg/L ozone. The colloidal manganese reacted with coagulant (poly aluminium chloride, PAC) and then formed the big floc. Ceramic membrane rejected effectively manganese floc during membrane filtration. Dissolved organic carbon(DOC) removal was dependent upon $Mn^{2+}$ concentration. While average $Mn^{2+}$ concentration was 0.43 and 0.85 mg/L in raw water, DOC removal rate in preozonation was 26.5 and 13.5%, respectively. The decrease rate of membrane permeability was faster without preozonation than with preozonation while membrane fouling decreased with NOM oxidation by ozone. In conclusion, raw water containing high concentration of manganese can be effectively treated in preozonation-coagulation-ceramic membrane filtration system.

Fabrication of Transparent Conducting Thin Film with High Hardness by Wet Process (습식 공정법에 의한 고경도 투명 전도막 제조)

  • Park, Jong-Guk;Jeon, Dae-Woo;Lee, Mi-Jai;Lim, Tea-Young;Hwang, Jonghee;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.826-830
    • /
    • 2015
  • Transparent Ag nanowire conducting thin films with high surface hardness were fabricated by bar coating method. When coating speed was changed from 35 mm/sec to 50 mm/sec, the transmittance of coated glass increased from 65.3% to 80.8% in visible light range and the surface resistance was changed from $10.1{\Omega}/sq$ to $23.3{\Omega}/sq$. The surface hardness and adhesion of thin film were 5H and 5B.

Effect of surface treatment and luting agent type on shear bond strength of titanium to ceramic materials

  • Karaokutan, Isil;Ozel, Gulsum Sayin
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.2
    • /
    • pp.78-87
    • /
    • 2022
  • PURPOSE. This study aimed to compare the effect of different surface treatments and luting agent types on the shear bond strength of two ceramics to commercially pure titanium (Cp Ti). MATERIALS AND METHODS. A total of 160 Cp Ti specimens were divided into 4 subgroups (n = 40) according to surface treatments received (control, 50 ㎛ airborne-particle abrasion, 110 ㎛ airborne-particle abrasion, and tribochemical coating). The cementation surfaces of titanium and all-ceramic specimens were treated with a universal primer. Two cubic all-ceramic discs (lithium disilicate ceramic (LDC) and zirconia-reinforced lithium silicate ceramic (ZLC)) were cemented to titanium using two types of resin-based luting agents: self-cure and dual-cure (n = 10). After cementation, all specimens were subjected to 5000 cycles of thermal aging. A shear bond strength (SBS) test was conducted, and the failure mode was determined using a scanning electron microscope. Data were analyzed using three-way ANOVA, and the Tukey-HSD test was used for post hoc comparisons (P < .05). RESULTS. Significant differences were found among the groups based on surface treatment, resin-based luting agent, and ceramic type (P < .05). Among the surface treatments, 50 ㎛ air-abrasion showed the highest SBS, while the control group showed the lowest. SBS was higher for dual-cure resin-based luting agent than self-cure luting agent. ZLC showed better SBS values than LDC. CONCLUSION. The cementation of ZLC with dual-cure resin-based luting agent showed better bonding effectiveness to commercially pure titanium treated with 50 ㎛ airborne-particle abrasion.

Study on Metal Microfilter Coated with Ceramics by Using Plasma Thermal Spray Method (플라즈마 용사를 이용한 복합세라믹 미세필터 연구)

  • Song, In-Gyu;Lee, Young-Min;Shin, Hyun-Myung;Choi, Hae-Woon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1035-1040
    • /
    • 2011
  • This research was performed on a microfilter made of a hybrid material (ceramic + metal) that was coated with ceramics on the metal-filter surface by using the thermal spray method. The ceramic powders used were $Al_2O_3+40TiO_2$ powder with a particle size of $20{\mu}m$ and $Al_2O_3$ (98%+)powder with a particle size of $45{\mu}m$. The metal filters were filter-grade $20{\mu}m$, $30{\mu}m$, and $50{\mu}m$ sintered metal powder filters (SIKA-R 20 IS, 30 IS, 50 IS; Sinter Metals Filters) and filter-grade $75{\mu}m$ sintered mesh filter with five layers. Ceramic-coated filters that were coated using the thermal spray method had a great influence on powder material, particle size, and coating thickness. However, these filters showed a fine performance when used as micro-filters.

Effect of surface treatments on the bond strength of indirect resin composite to resin matrix ceramics

  • Celik, Ersan;Sahin, Sezgi Cinel;Dede, Dogu Omur
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.4
    • /
    • pp.223-231
    • /
    • 2019
  • PURPOSE. The purpose of this study was to evaluate the shear bond strength (SBS) of an indirect resin composite (IRC) to the various resin matrix ceramic (RMC) blocks using different surface treatments. MATERIALS AND METHODS. Ninety-nine cubic RMC specimens consisting of a resin nanoceramic (RNC), a polymer-infiltrated hybrid ceramic (PIHC), and a flexible hybrid ceramic (FHC) were divided randomly into three surface treatment subgroups (n = 11). In the experimental groups, untreated (Cnt), tribochemical silica coating (Tbc), and Neodymium-Doped Yttrium Aluminum Garnet (Nd:YAG) laser irradiation (Lsr) with 3 W (150 mJ/pulse, 20 Hz for 20 sec.) were used as surface treatments. An indirect composite resin (IRC) was layered with a disc-shape mold ($2{\times}3mm$) onto the treated-ceramic surfaces and the specimens submitted to thermal cycling (6000 cycles, $5-55^{\circ}C$). The SBS test of specimens was performed using a universal testing machine and the specimens were examined with a scanning electron microscope to determine the failure mode. Data were statistically analyzed with two-way analysis of variance (ANOVA) and Tukey HSD test (${\alpha}=.05$). RESULTS. According to the two-way ANOVA, only the surface treatment parameter was statistically significant (P<.05) on the SBS of IRC to RMC. The SBS values of Lsr-applied RMC groups were significantly higher than Cnt groups for each RMC material, (P<.05). Significant differences were also determined between Tbc surface treatment applied and untreated (Cnt) PIHC materials (P=.039). CONCLUSION. For promoting a reliable bond strength during characterization of RMC with IRC, Nd:YAG laser or Tbc surface treatment technique should be used, putting in consideration the microstructure and composition of RMC materials and appropriate parameters for each material.

Fracture Behaviors of SiCf/SiC Composites Prepared by Hybrid Processes of CVI and PIP (화학침착법과 고분자함침 열분해법의 복합공정으로 제조한 SiCf/SiC 복합체의 제조 공정에 따른 파괴거동)

  • Park, Ji Yeon;Han, Jangwon;Kim, Daejong;Kim, Weon-Ju;Lee, Sea Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.430-434
    • /
    • 2014
  • $SiC_f$/SiC composites were prepared using the hybrid process of chemical vapor infiltration (CVI) and polymer impregnation and pyrolysis (PIP). Before the application of PIP, partially matrix-filled preform composites with different densities were fabricated by control of chemical vapor infiltration time and temperature. The changes of the final density of the $SiC_f$/SiC composites had a tendency similar to that of preform composites partially filled by CVI. Composites with lower density after the CVI process had a larger increment of density during the PIP process. Three types of microstructures were observed on the fractured surface of the composite: 1) well pulled-out fibers and lower density, 2) slightly pulled-out fibers and higher density, and 3) only bulk SiC. The different fractions and distributions of the microstructures could have an effect on the mechanical properties of the composites. In this study, $SiC_f$/SiC composites prepared using a hybrid process of CVI and PIP had density values in the range of $1.05{\sim}1.44g/cm^3$, tensile strength values in the range of 76.4 ~ 130.7 MPa, and fracture toughness values in the range of $11.2{\sim}13.5MPa{\cdot}m^{1/2}$.