• Title/Summary/Keyword: Hybrid WMN

Search Result 7, Processing Time 0.027 seconds

A Domain-based Reactive Routing Protocol for the Hybrid WMN (하이브리드 WMN을 위한 가상 도메인 기반의 반응형 라우팅 프로토콜)

  • Kim, Ho-Cheal
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.7
    • /
    • pp.59-70
    • /
    • 2014
  • This paper propose a new wireless multi-hop routing protocol that takes the hierarchical mesh of the hybrid WMN into account. WMN that is possible to provide various applications of wireless networks still has many open issues that should be solved despite the studies carried out over a decade. Especially, in routing protocol area, a problem degrading the routing efficiency by applying one of the routing protocols, which are designed for the MANET, to the hybrid WMN be solved above all. For the improvement of the routing performance, both good routing protocol and metric are essential. However, the recent studies are only concentrated in routing metric by use of the cross-layer design. Therefore, this paper is dedicated to the routing protocol that is essential for the performance of the routing but needed more studies. The proposed protocol in this paper is reactive, and designed to reorganize the hybrid WMN with several pseudo domains, and carry out domain-based route decision. By the simulation result for the performance analysis of the proposed protocol, the average delay for the route decision was decreased by 43% compared to AODV that is the typical reactive protocol.

A Study on Improvement of AODV for Hybrid Wireless Mesh Networks (혼합형 무선 메시 네트워크를 위한 AODV 개선 연구)

  • Kim, Ho-Cheal
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.8
    • /
    • pp.943-953
    • /
    • 2013
  • By the enormous increase in mobile nodes and diverse service requests on wireless networks, wireless mesh network(WMN) takes an interest as the solution for such requests. However, lots of issues which should be solved to deploy WMN are still remained. In the network layer, the performance improvement of routing protocols is the major issue of nowadays researches. WMN can be easily deployed by use of protocols for mobile ad-hoc networks(MANET) because it is much similar with MANET in multi-hop wireless routing and which node plays as host and router concurrently. Unfortunately, most routing protocols for MANET have drawbacks such as large traffic overhead and long delay time for route discovery due to the network extension. They are major factors of performance degradation of WMN and most researches are focused on them. In this paper, domain-based AODV which is amended AODV to be applied in hybrid WMN is proposed. The proposed scheme divides a hybrid WMN as several domains and performs route discovery by header layer domain. Therefore it can reduce the distance for route discovery as much as average hop count between domain header and member nodes. From the simulation, domain-based AODV was showed slowly increasing delay time due to the network extension.

Dual Mode-AODV for the Hybrid Wireless Mesh Network (하이브리드 무선 메시 네트워크를 위한 듀얼모드-AODV)

  • Kim, Hocheal
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • With the Development of Wireless Network Technology and Wireless Link Technology, Wireless Mesh Network (WMN) is Attracting Attention as a Key Technology to Construct the Wireless Transit Network. The WMN has been Studied for a Long Time in Various Fields, however there are still many Problems that have not been solved yet. One of them is the Routing Problem to find an Optimal path in a Multi-hop Network Composed of Wireless Links. In the Hybrid-WMN, which is one of the Three Types of WMN, Optimal Path Selection Requires Research on Path Search Protocols that Effectively use the Infrastructure Mesh as a Transit Network, Together with Research for a Routing Metric with Excellent Performance. Therefore, this Paper Proposes a Dual Mode-AODV(Ad hoc On-demand Distance Vector) for Hybrid-WMN. Simulation result shows that the Path Selection Delay was Reduced by 52% than AODV when the Proposed Dual Mode-AODV was applied.

A Survey on Hybrid Wireless Mesh Protocol Security

  • Tan, Whye-Kit;Lee, Sang-Gon;Lam, Jun-Huy
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2012.05a
    • /
    • pp.81-82
    • /
    • 2012
  • Wireless Mesh Network (WMN) functionality had been included into IEEE 802.11s. For WMN, the routing message is one of the most important parts that need to be protected. Hybrid Wireless Mesh Protocol (HWMP) is the default routing protocol for WMN. In this paper, the attacks and vulnerabilities of HWMP had been identified and the requirements needed to protect HWMP had also been discussed. Existing HWMP security had been compared with the requirements.

  • PDF

Hybrid FPMS: A New Fairness Protocol Management Scheme for Community Wireless Mesh Networks

  • Widanapathirana, Chathuranga H.;Sekercioglu, Y. Ahmet;Goi, Bok-Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.11
    • /
    • pp.1909-1928
    • /
    • 2011
  • Node cooperation during packet forwarding operations is critically important for fair resource utilization in Community Wireless Mesh Networks (CoWMNs). In a CoWMN, node cooperation is achieved by using fairness protocols specifically designed to detect and isolate malicious nodes, discourage unfair behavior, and encourage node participation in forwarding packets. In general, these protocols can be split into two groups: Incentive-based ones, which are managed centrally, and use credit allocation schemes. In contrast, reputation-based protocols that are decentralized, and rely on information exchange among neighboring nodes. Centrally managed protocols inevitably suffer from scalability problems. The decentralized, reputation-based protocols lacks in detection capability, suffer from false detections and error propagation compared to the centralized, incentive-based protocols. In this study, we present a new fairness protocol management scheme, called Hybrid FPMS that captures the superior detection capability of incentive-based fairness protocols without the scalability problems inherently expected from a centralized management scheme as a network's size and density grows. Simulation results show that Hybrid FPMS is more efficient than the current centralized approach and significantly reduces the network delays and overhead.

Traffic Flow Estimation based Channel Assignment for Wireless Mesh Networks

  • Pak, Woo-Guil;Bahk, Sae-Woong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.68-82
    • /
    • 2011
  • Wireless mesh networks (WMNs) provide high-speed backbone networks without any wired cable. Many researchers have tried to increase network throughput by using multi-channel and multi-radio interfaces. A multi-radio multi-channel WMN requires channel assignment algorithm to decide the number of channels needed for each link. Since the channel assignment affects routing and interference directly, it is a critical component for enhancing network performance. However, the optimal channel assignment is known as a NP complete problem. For high performance, most of previous works assign channels in a centralized manner but they are limited in being applied for dynamic network environments. In this paper, we propose a simple flow estimation algorithm and a hybrid channel assignment algorithm. Our flow estimation algorithm obtains aggregated flow rate information between routers by packet sampling, thereby achieving high scalability. Our hybrid channel assignment algorithm initially assigns channels in a centralized manner first, and runs in a distributed manner to adjust channel assignment when notable traffic changes are detected. This approach provides high scalability and high performance compared with existing algorithms, and they are confirmed through extensive performance evaluations.

Distributed Routing Based on Minimum End-to-End Delay for OFDMA Backhaul Mobile Mesh Networks

  • Chung, Jong-Moon;Lee, Daeyoung;Park, Jong-Hong;Lim, Kwangjae;Kim, HyunJae;Kwon, Dong-Seung
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.406-413
    • /
    • 2013
  • In this paper, an orthogonal frequency division multiple access (OFDMA)-based minimum end-to-end delay (MED) distributed routing scheme for mobile backhaul wireless mesh networks is proposed. The proposed scheme selects routing paths based on OFDMA subcarrier synchronization control, subcarrier availability, and delay. In the proposed scheme, OFDMA is used to transmit frames between mesh routers using type-I hybrid automatic repeat request over multipath Rayleigh fading channels. Compared with other distributed routing algorithms, such as most forward within radius R, farthest neighbor routing, nearest neighbor routing, and nearest with forwarding progress, simulation results show that the proposed MED routing can reduce end-to-end delay and support highly reliable routing using only local information of neighbor nodes.