데이타 종속성을 제거하기 위해서 명령어의 결과값을 예상하는 여러 결과값 예측기의 장점을 이용하여 높은 성능을 얻을 수 있는 새로운 혼합형 예측 메커니즘을 제안한다. 제안된 혼합형 결과값 예측기는 예상 테이블을 모험적으로 갱신할 수 있기 때문에 부적절한(stale) 데이타로 인해 잘못 예상되는 명령어의 수를 효과적으로 감소시킨다. 또한 정적 분류 정보를 사용하여 명령의 반입시 적절한 예측기에 할당함으로써 예상 정확도를 더욱 향상시키며, 하드웨어 비용을 효율적으로 감소시키도록 하였다. 5개의 SPECint 95 벤치마크 프로그램에 대해 SimpleScalar/PISA 3.0 툴셋을 사용하여 실험하였다. 16-이슈 폭에서 모험적 갱신을 사용한 평균 예상 정확도는 73%의 실험 결과가 나왔으며, 정적 분류 정보를 사용하였을 경우 예상 정확도가 88%로 증가된 결과를 얻었다.
슈퍼스칼라 프로세서에서 명령어 수준 병렬성(Instruction Level Parallelism)을 적극적으로 활용하기 위해서는 명령들 사이에 존재하는 제어 종속관계 및 데이타 종속관계를 극복하는 것이 필수적이다. 데이타 값 예측은 하나의 명령 결과가 생성되기 전에 미리 결과 값을 예측하고 이 예측된 결과를 사용하여 데이타 종속관계가 있는 명령들을 투기적으로 실행(speculative execution)하는 기법이다. 본 논문에서는 동적 분류 능력을 갖는 혼합형 데이타 값 예측기를 제안한다. 제안된 예측기는 최근 값 예측기, 스트라이드 예측기 및 2 단계 예측기를 결합한 혼합형으로 구성되며, 예측되는 명령은 하드웨어에 의한 동적 분류에 의해 각 예측기로 할당된다. 각 명령들의 특성에 따라 각 예측기로 실행 시에 동적 분류됨으로써 각 예측기는 기존의 혼합형 방식보다도 더욱 효과적으로 활용될 수 있다. 제안된 방식의 타당성 검증을 위해 실행구동방식(execution-driven) 시뮬레이터를 사용하여 SPECint95 벤치마크를 시뮬레이션하여 비교한다. 실험 결과 Instruction Per Cycle 비교실험에서 2 단계 예측기 보다 0.36, 혼합형 예측기 보다 0.0l8의 성능을 보였고, 제안된 방식이 기존의 혼합형 방식보다 예측 정확도가 평균 16%가 향상되었고, 하드웨어 비용을 측정한 결과 45%의 감소효과를 얻었다.
슈퍼스칼라 프로세서는 성능향상을 위해 명령어 반입폭과 이슈율을 증가시키고 있다. 데이터 종속성은 ILP(Instruction-Level Parallelism)를 향상시키는데 주요 장애요소가 되고 있으며, 최근 여러 논문에서 데이터 종속성을 제거하기 위해서 명령어의 결과값을 예상하는 메커니즘이 연구되었다. 그러나 이러한 예측기들은 예상한 명령어의 실제 결과값으로 예상 테이블을 갱신하기 전에 그 명령어를 다시 예상할 때 부적절(stale)한 데이터를 사용함으로써 예상 실패율이 증가하여 프로세서의 성능을 감소시킨다. 본 논문에서는 부적절 데이터 사용을 줄여 높은 성능을 얻을 수 있는 새로운 하이브리드 예측 메커니즘을 제안한다. 제안된 하이브리드 결과값 예측기는 예상 테이블을 모험적으로 갱신할 수 있기 때문에 부적절 데이터로 인해 잘못 예상되는 명령어의 수를 효과적으로 감소시킨다. 16-이슈폭 슈퍼스칼라 프로세서에서 SPECint95 벤치마크 프로그램에 대해 모험적 갱신을 사용함으로써 모험적 갱신을 사용하지 않은 경우의 평균 예상 정확도 59%에 비해 평균 예상 정확도가 72%에 비해 평균 예상 정확도가 72%로 크게 향상되었다.
본 논문에서는 고객 맞춤 서비스의 선호도를 정확하게 예측하기 위하여 사용자 프로파일 분석, 사용자간 유사도 분석을 이용한 HPPS(Hybrid Preference Prediction System) 설계를 제안한다. 기존의 NBCFA(Neighborhood Based Collaborative Filtering Algorithm)과 달리, 본 논문은 첫째, 선호도 예측식에서 이웃의 상품 평가가 없을 경우 상품에 대한 평균값을 이용하도록 하였고, 둘째, 선호도 예측식에서 사용자의 특성을 분석한 가중치를 반영하도록 하였고, 끝으로, 인접 이웃을 선정할 때 유사도, 상품 평가 여부, 평가 횟수를 반영하여 HPPS에 선호도의 정확도를 향상시켰다. 따라서 첫째와 둘째의 선호도 예측식을 이용하면 HPPS의 정확도는 기존의 NBCFA에 비해 97.24% 향상되었고, 인접이웃 선정방식에서도 HPPS 시스템의 정확도가 75% 향상되었다.
As processor's operational frequency increases and processors execute multiple instructions per cycle, the processor performance becomes more dependent on the load operand referencing latency and the data dependency. To reduce the operand fetch latency and to increase ILP by breaking the data dependency, we propose a value-address hybrid predictor using a reasonable size prediction buffer and analyse the performance improvement by the proposed predictor. Through the extensive simulation of 5 benchmark programs, the proposed hybrid prediction scheme accurately predicts 62.72% of all loads which are 12.64% higher than the value prediction scheme and show its cost-effectiveness compared to the address predition scheme. In addition, we analyse the performance improvement achieved by the stride management and the history of previous predictions.
To achieve high performance by exploiting instruction level parallelism(ILP) aggressively in superscalar processors, value prediction is used. Value prediction is a technique that breaks data dependences by predicting the outcome of an instruction and executes speculatively it's data dependent instruction based on the predicted outcome. In this paper, the performance of a hybrid value prediction scheme with dynamic classification mechanism is measured and analyzed by using execution-driven simulator for SPECint95 benchmark set.
데이타 종속성은 명령어 수준 병렬성을 향상시키는데 중요한 장애요소가 되고 있으며, 최근 여러 논문에서 데이타 종속을 제거하기 위하여 결과 값을 예상하는 방법이 연구되고 있다. 혼합형 결과 값 예측기는 여러 예측기의 장점을 이용하여 높은 예상 정확도를 얻을 수 있지만, 동일한 명령어가 여러 개의 예측기 테이블에 중복 엔트리를 갖게되어 높은 하드웨어의 비용을 필요로 한다는 단점이 있다. 본 논문에서는 정적 및 동적 분류 정보를 이용하여 높은 성능을 얻을 수 있는 새로운 혼합형 결과 값 예측기를 제안한다. 제안된 예측기는 반입 단계 동안 정적 분류 정보를 사용하여 적절한 예측기에 할당함으로써 테이블 크기를 효과적으로 감소시켰고 예상정확도를 향상시켰다. 또한 제안된 예측기는 동적 분류를 사용하여“Unknown”유형의 명령어에 가장 적절한 예측방법을 선택하도록 하여 예상 정확도를 더욱 향상시켰다. SimpleScaiar/PISA 툴셋과 SPECint95 벤치마크 프로그램에서 시뮬레이션 한 결과, 정적 분류 정보를 사용하였을 경우 평균 예상 정확도가 85.1%, 정적 및 동적 분류 정보를 모두 사용하였을 경우 87.6%의 평균 예상 정확도를 얻을 수 있었다.
어떤 클래스에 속한 레코드의 개수가 다른 클래스들에 속한 레코드의 개수보다 매우 많은 경우에, 이 데이터 집합을 '불균형 데이터 집합'이라고 한다. 데이터 분류에 사용되는 많은 기법들은 이러한 불균형 데이터에 대해서 저조한 성능을 보인다. 어떤 기법의 성능을 평가할 때에 적중률뿐만 아니라, 민감도와 특이도도 함께 측정하여야 한다. 고객의 이탈을 예측하는 문제에서 '유지' 레코드가 다수 클래스를 차지하고, '이탈' 레코드는 소수 클래스를 차지한다. 민감도는 실제로 '유지'인 레코드를 '유지'로 예측하는 비율이고, 특이도는 실제로 '이탈'인 레코드를 '이탈'로 예측하는 비율이다. 많은 데이터 마이닝 기법들이 불균형 데이터에 대해서 저조한 성능을 보이는 것은 바로 소수 클래스의 적중률인 특이도가 낮기 때문이다. 불균형 데이터 집합에 대처하는 과거 연구 중에는 소수 클래스를 Oversampling하여 균형 데이터 집합을 생성한 후에 데이터 마이닝 기법을 적용한 연구들이 있다. 이렇게 균형 데이터 집합을 생성하여 예측을 수행하면, 특이도는 다소 향상시킬 수 있으나 그 대신 민감도가 하락하게 된다. 본 연구에서는 민감도는 유지하면서 특이도를 향상시키는 모델을 개발하였다. 개발된 모델은 Support Vector Machine (SVM), 인공신경망(ANN) 그리고 의사결정나무 기법 등으로 구성된 하이브리드 모델로서, Hybrid SVM Model이라고 명명하였다. 구축과정 및 예측과정은 다음과 같다. 원래의 불균형 데이터 집합으로 SVM_I Model과 ANN_I Model을 구축한다. 불균형 데이터 집합으로부터 Oversampling을 하여 균형 데이터 집합을 생성하고, 이것으로 SVM_B Model을 구축한다. SVM_I Model은 민감도에서 우수하고, SVM_B Model은 특이도에서 우수하다. 입력 레코드에 대해서 SVM_I와 SVM_B가 동일한 예측치를 도출하면 그것을 최종 해로 결정한다. SVM_I와 SVM_B가 상이한 예측치를 도출한 레코드에 대해서는 ANN과 의사결정나무의 도움으로 판별 과정을 거쳐서 최종 해를 결정한다. 상이한 예측치를 도출한 레코드에 대해서는, ANN_I의 출력값을 입력속성으로, 실제 이탈 여부를 목표 속성으로 설정하여 의사결정나무 모델을 구축한다. 그 결과 다음과 같은 2개의 판별규칙을 얻었다. 'IF ANN_I output value < 0.285, THEN Final Solution = Retention' 그리고 'IF ANN_I output value ${\geq}0.285$, THEN Final Solution = Churn'이다. 제시되어 있는 규칙의 Threshold 값인 0.285는 본 연구에서 사용한 데이터에 최적화되어 도출된 값이다. 본 연구에서 제시하는 것은 Hybrid SVM Model의 구조이지 특정한 Threshold 값이 아니기 때문에 이 Threshold 값은 대상 데이터에 따라서 얼마든지 변할 수 있다. Hybrid SVM Model의 성능을 UCI Machine Learning Repository에서 제공하는 Churn 데이터 집합을 사용하여 평가하였다. Hybrid SVM Model의 적중률은 91.08%로서 SVM_I Model이나 SVM_B Model의 적중률보다 높았다. Hybrid SVM Model의 민감도는 95.02%이었고, 특이도는 69.24%이었다. SVM_I Model의 민감도는 94.65%이었고, SVM_B Model의 특이도는 67.00%이었다. 그러므로 본 연구에서 개발한 Hybrid SVM Model이 SVM_I Model의 민감도 수준은 유지하면서 SVM_B Model의 특이도보다는 향상된 성능을 보였다.
중고차 시장에서 온라인 플랫폼 서비스의 시장 점유율은 지속적으로 증가하고 있다. 또한 중고차 온라인 플랫폼 서비스는 서비스 이용자에게 차량의 제원, 사고 이력, 점검 내역, 세부 옵션, 그리고 중고차의 가격 등을 공개하고 있다. 2023년 현재 국내 자동차 시장에서 SUV 차종의 신차 점유율은 50% 이상으로 확대되었으며, 하이브리드 차종은 신차 판매량이 지난해에 비해 두 배 이상 증가하였다. 이에 따라 이들 차종은 국내 중고차 시장에서도 인기를 끌고 있다. 기존 연구는 전체 차량 또는 브랜드별 차량을 대상으로 머신러닝 모델을 실행하여 중고차 가격 예측 모델을 제안하였다. 반면 국내 자동차 시장에서 SUV와 하이브리드 차종의 인기는 매년 상승하고 있으나, 이들 차종을 대상으로 중고차 가격 예측 모델을 제안한 연구는 찾기 어려웠다. 본 연구는 국내 시장에서 자국 브랜드가 생산한 세단, SUV, 그리고 하이브리드 차종을 대상으로 차량 제원과 옵션, 총 72개의 특성을 활용하여 이들 차종별 가장 우수한 중고차 가격 예측 모델을 선정하였다. 이를 위해 특성 선택으로 Lasso 회귀 모델을 활용하여 특성을 선별한 후 동일 샘플링으로 앙상블 모델을 실행하였다. 그 결과 모든 차종에서 최우수 모델은 CBR 모델로 선정되었으며, 차종별 최우수 모델을 대상으로 Tree SHAP Value의 시각화를 실행하여 특성의 기여도 및 방향성을 확인하였다. 본 연구의 시사점으로 온라인 플랫폼 서비스를 이용하는 매매관계자에게 차종별 중고차 가격 예측 모델을 제안하고 특성의 기여 수준과 방향성을 확인함으로써 이들 간 정보의 비대칭으로 야기된 문제 해결에 지원이 될 것으로 기대한다.
야구는 매 경기마다 다양한 기록을 생성하며, 이러한 기록을 기반으로 다음 경기에 대한 승패예측이 이루어진다. 프로야구 승패 예측에 대한 연구는 많은 사람들에 의해 행해져 왔으나 아직 이렇다할 결과를 얻지 못하고 있는 상태이다. 이처럼 승패 예측이 어려운 이유는 많은 경기 기록들 중 승패 예측에 영향을 주는 요소의 선별이 어렵고, 예측에 사용된 자료들 간의 중복 요인으로 인해 학습 모델의 복잡도만 증가시킬 뿐 좋은 성능을 보이지 못하고 있다. 이에 본 논문에서는 전문가들의 의견을 바탕으로 학습 요소들을 선택하고, 선택된 자료들을 이용하여 휴리스틱 함수를 구성하였다. 요소들 간의 조합을 통해 예측에 영향을 줄 수 있는 새로운 값을 산출함과 동시에 학습 알고리즘에 사용될 입력 값의 차원을 줄일 수 있는 혼합형 모델을 제안하였다. 그 결과, 학습 알고리즘으로 사용된 역전파 알고리즘의 복잡도를 감소시키고, 프로야구 경기 승패 예측에 있어서도 정확성이 향상되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.