• Title/Summary/Keyword: Hybrid User Context

Search Result 29, Processing Time 0.024 seconds

Scalable Hybrid Recommender System with Temporal Information (시간 정보를 이용한 확장성 있는 하이브리드 Recommender 시스템)

  • Ullah, Farman;Sarwar, Ghulam;Kim, Jae-Woo;Moon, Kyeong-Deok;Kim, Jin-Tae;Lee, Sung-Chang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.61-68
    • /
    • 2012
  • Recommender Systems have gained much popularity among researchers and is applied in a number of applications. The exponential growth of users and products poses some key challenges for recommender systems. Recommender Systems mostly suffer from scalability and accuracy. The accuracy of Recommender system is somehow inversely proportional to its scalability. In this paper we proposed a Context Aware Hybrid Recommender System using matrix reduction for Hybrid model and clustering technique for predication of item features. In our approach we used user item-feature rating, User Demographic information and context information i.e. specific time and day to improve scalability and accuracy. Our Algorithm produce better results because we reduce the dimension of items features matrix by using different reduction techniques and use user demographic information, construct context aware hybrid user model, cluster the similar user offline, find the nearest neighbors, predict the item features and recommend the Top N- items.

A Fusion Context-Aware Model based on Hybrid Sensing for Recommendation Smart Service (지능형 스마트 서비스를 위한 하이브리드 센싱 기반의 퓨전 상황인지 모델)

  • Kim, Svetlana;Yoon, YongIk
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • Variety of smart devices including smart phone have become and essential item in user's daily life. This means that smart devices are good mediators to get collecting user's behavior by sensors mounted on the devices. The information from smart devices is important clues to identify by analyzing the user's preferences and needs. Through this, the intelligent service which is fitted to the user is possible. This paper propose a smart service recommendation model based on user scenario using fusion context-awareness. The information for recommendation services is collected to make the scenario depending on time, location, action based on the Fusion process. The scenarios can help predict a user's situation and provide the services in advance. Also, content categories as well as the content types are determined depending on the scenario. The scenario is a method for providing the best service as well as a basis for the user's situation. Using this method, proposing a smart service model with the fusion context-awareness based on the hybrid sensing is the goal of this paper.

A Hybrid Collaborative Filtering Method using Context-aware Information Retrieval (상황인식 정보 검색 기법을 이용한 하이브리드 협업 필터링 기법)

  • Kim, Sung Rim;Kwon, Joon Hee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.1
    • /
    • pp.143-149
    • /
    • 2010
  • In ubiquitous environment, information retrieval using collaborative filtering is a popular technique for reducing information overload. Collaborative filtering systems can produce personal recommendations by computing the similarity between your preference and the one of other people. We integrate the collaboration filtering method and context-aware information retrieval method. The proposed method enables to find some relevant information to specific user's contexts. It aims to makes more effective information retrieval to the users. The proposed method is conceptually comprised of two main tasks. The first task is to tag context tags by automatic tagging technique. The second task is to recommend items for each user's contexts integrating collaborative filtering and information retrieval. We describe a new integration method algorithm and then present a u-commerce application prototype.

Development of Hybrid Filtering Recommendation System using Context-Information in Mobile Environments (모바일 환경에서 상황정보를 이용한 하이브리드 필터링 추천시스템 설계)

  • Ko, Jung-Min;Nam, Doo-Hee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.3
    • /
    • pp.95-100
    • /
    • 2011
  • Due to rapid growth and development of telecommunication information technology, interest has been amplified regarding ubiquitous network computing and user-oriented service. Also, the rapid development of related technologies has been a big spotlight. Smart phone, with features such as a PC with advanced features is a mobile phone. According to environment and infrastructure development, a variety of mobile-based application software to provide various kinds of information and services has been released. However, most of them are provider-driven information systems and aim to provide large amounts of information simply to an unspecified number of users. Therefore, customized or personalized provision of information and service explained earlier for individual users has been hardly come true. According to background and need, this study wants to design and implement recommendations system for personalization and customization in mobile environments. To acquire more accurate recommendation results, recommendation system shall be composed using the Hybrid Filtering. Effective information recommendation according to user's situation by using user's context-information of purpose and location that are available in mobile devices before running the filtering of the information to improve the quality of recommendations.

A Study of Advertising Model based on Hybrid User Context in Smart Space (융합 상황정보 기반 스마트 환경에서의 광고 모델 연구)

  • Yoon, Yong-Ik;Lee, Su-Ji
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.2
    • /
    • pp.187-195
    • /
    • 2012
  • Smart phone allows advertisers to estimate customers behavior by selecting user context awareness information and gives users instant feed back about their behavior. Electronic equipments such as smart phone enable advertisers to advertise interesting product for each customers at the point of purchase. In this paper, we deal with the trends of Smart phone and internet based TV in the spotlight as the upcoming advertising media and propose the effective way of advertising, Smart Advertising model, which can give users advertising contents of their interesting product by collecting user context information from a variety of devices including N-screen in smart space. This model will induce modern people who live in flood of advertisements to buy products by providing interesting advertising contents.

A Music Recommendation Method Using Emotional States by Contextual Information

  • Kim, Dong-Joo;Lim, Kwon-Mook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.10
    • /
    • pp.69-76
    • /
    • 2015
  • User's selection of music is largely influenced by private tastes as well as emotional states, and it is the unconsciousness projection of user's emotion. Therefore, we think user's emotional states to be music itself. In this paper, we try to grasp user's emotional states from music selected by users at a specific context, and we analyze the correlation between its context and user's emotional state. To get emotional states out of music, the proposed method extracts emotional words as the representative of music from lyrics of user-selected music through morphological analysis, and learns weights of linear classifier for each emotional features of extracted words. Regularities learned by classifier are utilized to calculate predictive weights of virtual music using weights of music chosen by other users in context similar to active user's context. Finally, we propose a method to recommend some pieces of music relative to user's contexts and emotional states. Experimental results shows that the proposed method is more accurate than the traditional collaborative filtering method.

A Tour Guide System Based on a Context-Aware in Ubiquitous Environment (유비쿼터스 환경에서 상황인지 기반 문화재 답사도우미 시스템)

  • Park, Ji-Hyung;Lee, Seung-Soo;Kim, Sung-Ju;Lee, Seok-Ho;Yeom, Ki-Won
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.5
    • /
    • pp.365-374
    • /
    • 2006
  • The ubiquitous environment is to support people in their everyday life in an inconspicuous and unobtrusive way. This environment requires information such as the person, his/her preferences, and habits which is available in the ubiquitous system. In this paper, we propose the context aware system that can provide the tailored information service for user in ubiquitous computing environment. Our system architecture is divided into 4 domain models such as context awareness, presentation, interface and inference domain. Each domain model can perform some predefined tasks independently. And we suggest the hybrid algorithm combined with fuzzy and Bayesian method in order to reason what is the suitable information for user. We show the possibility for the real application through applying the system to the TGA (Tour Guide Assistant) for Kyoungju historical site.

A Context-Aware System in Ubiquitous Environment (유비쿼터스 환경에서의 상황 인지 시스템 연구 활동 소개 도우미 - -)

  • 박지형;이승수;김성주;염기원;이석호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1048-1052
    • /
    • 2004
  • The ubiquitous environment is to support people in their everyday life in an inconspicuous and unobtrusive way. This requires that information of the person and her preferences, liking, and habits are available in the ubiquitous system. In this paper, we propose the context aware system that can provide the tailored information service for user in ubiquitous computing environment. The system architecture is composed of 4 domain models that can perform some pre-defined tasks independently. And we suggest the hybrid algorithm combined with fuzzy and Bayesian network to reason what information is suitable for user environment. Finally, we apply to agent based RGA(Research Guide Assistant).

  • PDF

A Deep Learning Model for Extracting Consumer Sentiments using Recurrent Neural Network Techniques

  • Ranjan, Roop;Daniel, AK
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.238-246
    • /
    • 2021
  • The rapid rise of the Internet and social media has resulted in a large number of text-based reviews being placed on sites such as social media. In the age of social media, utilizing machine learning technologies to analyze the emotional context of comments aids in the understanding of QoS for any product or service. The classification and analysis of user reviews aids in the improvement of QoS. (Quality of Services). Machine Learning algorithms have evolved into a powerful tool for analyzing user sentiment. Unlike traditional categorization models, which are based on a set of rules. In sentiment categorization, Bidirectional Long Short-Term Memory (BiLSTM) has shown significant results, and Convolution Neural Network (CNN) has shown promising results. Using convolutions and pooling layers, CNN can successfully extract local information. BiLSTM uses dual LSTM orientations to increase the amount of background knowledge available to deep learning models. The suggested hybrid model combines the benefits of these two deep learning-based algorithms. The data source for analysis and classification was user reviews of Indian Railway Services on Twitter. The suggested hybrid model uses the Keras Embedding technique as an input source. The suggested model takes in data and generates lower-dimensional characteristics that result in a categorization result. The suggested hybrid model's performance was compared using Keras and Word2Vec, and the proposed model showed a significant improvement in response with an accuracy of 95.19 percent.

Hybrid Movie Recommendation System Using Clustering Technique (클러스터링 기법을 이용한 하이브리드 영화 추천 시스템)

  • Sophort Siet;Sony Peng;Yixuan Yang;Sadriddinov Ilkhomjon;DaeYoung Kim;Doo-Soon Park
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.357-359
    • /
    • 2023
  • This paper proposes a hybrid recommendation system (RS) model that overcomes the limitations of traditional approaches such as data sparsity, cold start, and scalability by combining collaborative filtering and context-aware techniques. The objective of this model is to enhance the accuracy of recommendations and provide personalized suggestions by leveraging the strengths of collaborative filtering and incorporating user context features to capture their preferences and behavior more effectively. The approach utilizes a novel method that combines contextual attributes with the original user-item rating matrix of CF-based algorithms. Furthermore, we integrate k-mean++ clustering to group users with similar preferences and finally recommend items that have highly rated by other users in the same cluster. The process of partitioning is the use of the rating matrix into clusters based on contextual information offers several advantages. First, it bypasses of the computations over the entire data, reducing runtime and improving scalability. Second, the partitioned clusters hold similar ratings, which can produce greater impacts on each other, leading to more accurate recommendations and providing flexibility in the clustering process. keywords: Context-aware Recommendation, Collaborative Filtering, Kmean++ Clustering.