• Title/Summary/Keyword: Hybrid Stress Analysis

Search Result 258, Processing Time 0.029 seconds

A Parametric Study on Tensile Stress of a Hybrid Floating Structure System (매개변수 연구를 통한 하이브리드형 부유식 구조물의 인장응력 발생 분석)

  • Zi, Goangseup;Lee, Seung-Jung;Kwak, Yeon-Min;Jeong, Youn
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5B
    • /
    • pp.313-320
    • /
    • 2012
  • A hybrid floating structure system combined with pontoon and semi-submersible type modules is proposed. This new system can reduce tensile forces of bottom slabs which could cause fatal damage of concrete floating structures. We performed a parametric study on the dimensions of this new system and investigate the sensitivity of the parameters to the behavior. In order to investigate various cases efficiently, we developed a simple two-step static analysis method for the fluid-structure interaction. An optimum system is derived from the investigation of the analysis results, weights and drafts of the hybrid structure. This study shows that introducing this new system to concrete floating structures is an effective way to reduce the tensile force of the bottm slab of such a floating structure. Also, it was found that when the length of the semi-submersible module is about 15%, the behavior would be optimal in the considered case.

Effects of Density Change and Cooling Rate on Heat Transfer and Thermal Stress During Vertical Solidification Process (수직응고 시스템에서 밀도차와 냉각률이 열전달 및 열응력에 미치는 영향)

  • 황기영;이진호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1095-1101
    • /
    • 1995
  • Numerical analysis of vertical solidification process allowing solid-liquid density change is performed by a hybrid method between a winite volume method (FVM) and a finite element method (FEM). The investigation focuses on the influence of solid-liquid density change and cooling rates on the motion of solid-liquid interface, solidified mass fraction, temperatures and thermal stresses in the solid region. Due to the density change of pure aluminium, solid-liquid interface moves more slowly but the solidified mass fraction is larger. The cooling rate of the wall is shown to have a significant influence on the phase change heat transfer and thermal stresses, while the density change has a small influence on the motion of the interface, solidified mass fraction, temperature distributions and thermal stresses. As the cooling rate increases, the thermal stresses become higher at the early stage of a solidification process, but it has small influence on the final stresses as the steady state is reached.

Study on the Design Methodology of Constant Velocity Joints for Passenger Cars using DOE (실험계획법을 활용한 승용차용 등속조인트 설계기법 연구)

  • Jeong, Chang-Hyun;Jung, Do-Hyun;Bae, Won-Rak
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.121-133
    • /
    • 2008
  • We presented design methodology of constant velocity joint for passenger cars using design of experiment. On the basis of contact normal stress of internal components of constant velocity joints, we performed a sensitivity analysis of several design parameters. And then we performed robust design and optimization design process. As a result, we could find robust design and also propose the optimized design. Presented design process would be very helpful for engineers who are suffer for new constant velocity joint design.

Investigation on the Corrosion Behaviour of Weld Structure

  • Kim, Hwan Tae;Kil, Sang Cheol;Hwang, Woon Suk;Cho, Won-Seung
    • Corrosion Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.33-35
    • /
    • 2007
  • Welding technology plays an important role in the fabrication of structure, and this has led to an increasing attention in the use of high quality advanced welding technology such as power beam welding, friction stir welding, and laser-arc hybrid welding, etc. At the same time, welding can influence various factors in the performance of plant and equipment, and corrosion behaviour of weldment has been one of the major issues for both welding and corrosion research engineers. The aim of this paper is to give a short survey of the recent technical trends of welding and corrosion behaviours including the electrochemical corrosion, stress corrosion cracking, and corrosion fatigue in connection with the welding materials, welding process, and welding fabrication.

Influence of Manufacturing and Assembly Errors on The Static Characteristics of Epicyclic Gear Trains (가공오차 및 조립오차가 유성기어열의 정특성에 미치는 영향)

  • Oh, Jae-Kook;Cheon, Gill-Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1597-1606
    • /
    • 2003
  • Static analysis using hybrid finite element(FE) method has been applied to characterize the influence of position, runout and thickness errors of the sun, ring and planet on the bearing forces and critical tooth stress. Some guidelines for tolerance control to manage critical stress and bearing forces are deduced from the results. Carrier indexing error planet assembly and planet tooth thickness error are most critical to reduce planet bearing force and maximize load sharing as well as to reduce critical stresses. Sun and carrier bearing forces due to errors increase several times more than those of normal condition.

The influence of composite resin restoration on the stress distribution of notch shaped noncarious cervical lesion A three dimensional finite element analysis study (복합레진 수복물이 쐐기형 비우식성 치경부 병소의 응력 분포에 미치는 영향에 관한 3차원 유한요소법적 연구)

  • Lee, Chae-Kyung;Park, Jeong-Kil;Kim, Hyeon-Cheol;Woo, Sung-Gwan;Kim, Kwang-Hoon;Son, Kwon;Hur, Bock
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.1
    • /
    • pp.69-79
    • /
    • 2007
  • The purpose of this study was to investigate the effects of composite resin restorations on the stress distribution of notch shaped noncarious cervical lesion using three-dimensional (3D) finite element analysis (FEA). Extracted maxillary second premolar was scanned serially with Micro-CT (SkyScan1072 ; SkyScan, Aartselaar, Belgium). The 3D images were processed by 3D-DOCTOR (Able Software Co., Lexington, MA, USA). ANSYS (Swanson Analysis Systems, Inc., Houston, USA) was used to mesh and analyze 3D FE model. Notch shaped cavity was filled with hybrid or flowable resin and each restoration was simulated with adhesive layer thickness ($40{\mu}m$) A static load of 500 N was applied on a point load condition at buccal cusp (loading A) and palatal cusp (loading B). The principal stresses in the lesion apex (internal line angle of cavity) and middle vertical wall were analyzed using ANSYS. The results were as follows 1. Under loading A, compressive stress is created in the unrestored and restored cavity. Under loading B, tensile stress is created. And the peak stress concentration is seen at near mesial corner of the cavity under each load condition. 2. Compared to the unrestored cavity, the principal stresses at the cemeto-enamel junction (CEJ) and internal line angle of the cavity were more reduced in the restored cavity on both load con ditions. 3. In teeth restored with hybrid composite, the principal stresses at the CEJ and internal line angle of the cavity were more reduced than flowable resin.

Comparative Performance Analysis of Pressurized Solid Oxide Fuel Cell / Gas Turbine Hybrid Systems Considering Different Cell Inlet Preheating Methods (셀 입구 예열방법에 따른 가압형 고체산화물 연료전지/가스터빈 하이브리드 시스템의 성능 비교 해석)

  • Yang Won Jun;Kim Jae Hwan;Kim Tong Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.722-729
    • /
    • 2005
  • Design analysis of the solid oxide fuel cell and gas turbine combined power system is performed considering different methods for preheating cell inlet air. The purpose of air preheating is to keep the temperature difference between cell inlet and outlet within a practical design range thus to reduce thermal stress inside the cell. Three different methods considered are (1) adopting a burner in front of the cell, (2) adopting a preheater (heat transfer from the main combustor) in front of the cell and (3) using recirculation of the cathode exit gas. For each configuration, analyses are carried out for two values of allowable maximum cell temperature difference. Performance characteristics of all cases are compared and design limitations are discussed. Relaxation of the cell temperature difference (larger difference) is proved to ensure higher efficiency. Recirculation of the cathode exit gas exhibits better performance than other methods and this advantage becomes more prominent as the constraint of the cell temperature difference becomes more severe (smaller temperature difference).

A Study on the Characteristics of Ceramic Ball Bearing (세라믹 볼베어링의 특성해석에 관한 연구)

  • 김완두;한동철
    • Tribology and Lubricants
    • /
    • v.8 no.2
    • /
    • pp.64-72
    • /
    • 1992
  • The recent trends of rotating machinery demand high speed and high temperature operation, and the bearing with new material is required to be developed. Ceramic, especially silicon nitride, have been receiving attention as alternative material to conventional bearing steel. Ceramic ball bearing offers major performance advantages over steel bearing, for instance, high speed, maginal lubrication, high temperature, improved corrosion resistance and nonmagnetic capabilities etc.. In this paper, the mechanical characteristics of ceramic ball bearing (hybrid ceramic bearing and all ceramic bearing) were investigated, and the characteristics of ceramic bearing were compared with that of steel bearing. Deep groove ball bearing 6208 was taken the object of analysis. The main results of analysis were followings: the radial stiffness of hybrid and all ceramic bearing were 112% and 130% that of steel bearing, and the axial stiffness of all ceramic bearing was 110% that of steel bearing. According as rotating speed was up, the ball load, the contact angle, the contact stress and the spin-to-roll ratio between ball and raceway of ceramic bearing were far smaller than these of steel bearing. And there was not a significant difference between the minimum film thickness of ceramic bearing and steel bearing. It is expected that this research is contributed to enhanced fundamental technology for the practical applications of ceramic ball bearing.

The Effects of Temperature and Water Absorption on Failure Behaviors of Carbon / Aramid Fiber Composites (온도 및 수분이 탄소/아라미드 섬유 복합재의 파손거동에 미치는 영향)

  • Kwon, Woo Deok;Kwon, Oh Heon;Park, Woo Rim
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.4
    • /
    • pp.11-19
    • /
    • 2022
  • This paper presents the effects of high temperature and water absorption on the mechanical behaviors of carbon-aramid fiber composites, specifically their strength, elastic modulus, and fracture. These composites are used in industrial structures because of their high specific strength and toughness. Carbon fiber composites are vulnerable to the impact force of external objects despite their excellent properties. Aramid fibers have high elongation and impact absorption capabilities. Accordingly, a hybrid composite with the complementary properties and capabilities of carbon and aramid fibers is fabricated. However, the exposure of aramid fiber to water or heat typically deteriorates its mechanical properties. In view of this, tensile and flexural tests were conducted on a twill woven carbon-aramid fiber hybrid composite to investigate the effects of high temperature and water absorption. Moreover, a multiscale analysis of the stress behavior of the composite's microstructure was implemented. The results show that the elastic modulus of composites subjected to high temperature and water absorption treatments decreased by approximately 22% and 34%, respectively, compared with that of the composite under normal conditions. The crack behavior of the composites was well identified under the specimen conditions.

Elastic analysis of interfacial stress concentrations in CFRP-RC hybrid beams: Effect of creep and shrinkage

  • Abderezak, Rabahi;Daouadji, Tahar Hassaine;Abbes, Boussad;Rabia, Benferhat;Belkacem, Adim;Abbes, Fazilay
    • Advances in materials Research
    • /
    • v.6 no.3
    • /
    • pp.257-278
    • /
    • 2017
  • A simple closed-form solution to calculate the interfacial shear and normal stresses of retrofitted concrete beam strengthened with thin composite plate under mechanical loads including the creep and shrinkage effect has been presented in this paper. In such plated beams, tensile forces develop in the bonded plate, and these have to be transferred to the original beam via interfacial shear and normal stresses. Consequently, debonding failure may occur at the plate ends due to a combination of high shear and normal interfacial stresses. These stresses between a beam and a soffit plate, within the linear elastic range, have been addressed by numerous analytical investigations. Surprisingly, none of these investigations has examined interfacial stresses while taking the creep and shrinkage effect into account. In the present theoretical analysis for the interfacial stresses between reinforced concrete beam and a thin composite plate bonded to its soffit, the influence of creep and shrinkage effect relative to the time of the casting, and the time of the loading of the beams is taken into account. Numerical results from the present analysis are presented both to demonstrate the advantages of the present solution over existing ones and to illustrate the main characteristics of interfacial stress distributions.