• Title/Summary/Keyword: Hybrid Storage

Search Result 507, Processing Time 0.025 seconds

Control Strategy for Hybrid Module with Energy Storage for Island Mode (에너지 저장 장치를 갖는 태양광 하이브리드 모듈의 제어 전략)

  • Choi, Bong-Yeon;Jang, Jin-Woo;Lee, Soon-Ryung;Kim, Young-Ho;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.477-478
    • /
    • 2013
  • This paper presents the control mehtod of a photovoltaic(PV) hybrid generation with energy storage system(ESS). To stabilize power control between PV generation system with ESS and local load, the proposed control method performs grid-connected and islanding operations. Through the simulation results the theoretical analysis of proposed method is verified.

  • PDF

An Efficient SSD-based Hybrid Storage Architecture for Database Search (SSD 기반의 혼합 스토리지 구조를 이용한 데이터베이스 검색 성능의 최적화)

  • Choi, Ji Hyeon;Youn, Hee Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.07a
    • /
    • pp.353-354
    • /
    • 2014
  • 오늘날 데이터베이스 시스템 의 스토리지에 많은 정보를 저장하게 되는데 이때 주로 HDD가 사용되고 있으며, 지금까지 대용량 저장 장치로 발전을 해왔다. HDD는 단위 비트 당 가격이 저렴한 이점이 있으나 HDD를 이용한 저장장치는 낮은 수행 속도 때문에 빠르게 정보를 제공받기를 원하는 사용자의 요구를 충족시키지 못하고 있다. 이를 해결하기 위해 빠른 I/O속도를 갖는 SSD를 이용한 저장 장치가 연구가 많이 되고 있으나 비트 당 가격이 비싼 SSD의 단점으로 인해 HDD를 전부 SSD로 대체하기에는 어려움이 있다. 본 논문에서는 HDD를 SSD로 완전히 대체하는 시스템이 아니라 SSD를 캐시로 사용한 SSD의 기반으로 혼합 스토리지 구조를 이용하여 검색 성능을 최적화시키기 위한 방법을 제안한다.

  • PDF

Design of Hybrid Energy Storage System Using Dual Battery and Control Algorithm Based on Fuzzy Logic (이종 배터리를 이용한 HBESS 설계 및 퍼지 논리 기반의 제어 알고리즘)

  • Noh, Tae-Won;Ahn, Jung-Hoon;Lee, Byoung Kuk
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.58-59
    • /
    • 2017
  • 본 논문은 고에너지 밀도와 고출력 특성의 이종 배터리를 이용한 HBESS (Hybrid Battery Energy Storage System) 설계방안과 퍼지 로직 기반의 제어 알고리즘을 개발한다. 시스템의 전력 수요 특성을 고려하여 이종 배터리의 최적 용량을 산정하고 HBESS의 구성 방안을 제안한다. 내부 상태에 따라 변화하는 배터리 특성을 효과적으로 반영하기 위하여 퍼지 논리 기반의 시스템 제어 알고리즘을 도입한다. 본 연구의 타당성은 실제 전력 수요 프로파일 기반의 시뮬레이션을 통하여 검증한다.

  • PDF

A Study on the Hybrid PCS using Energy Storage System for Grid Stabilization. (에너지 저장장치 내장형 하이브리드 전력변환장치를 이용한 계통안정화연구)

  • Lee, Seong Su;Kim, Hyung Jun;Han, Gi Jun;Cho, Dustin;Seo, Gwang Deok
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.503-505
    • /
    • 2012
  • 본 연구에서는 실증기능 구현을 위해 75KW로 설계된 리튬-폴리머배터리(Lithium Polymer Battery 이하 배터리)와 ESS(Energy Storage System) 내장형 Hybrid-PCS(이하 PCS)을 이용하여 불균일한 풍력 발전원에 대한 Smoothing 제어 및 정출력 제어 대한 연구를 진행 하였다. 잦은 전류 변동으로 인해 발생되는 출력 변동의 안정화를 위해 인버터 전류제어, 벅/부스트 전압제어 기법을 사용하였다. 최적의 Smoothing 제어를 위한 필터 계수 값을 찾기 위한 시험을 진행 하였으며 Energy shift을 위한 정출력 시험도 진행 하였다. 또한 각 제어 모드에서 ESS 중요 파라미터인 SOC(State Of Charge 이하 SOC)변화를 배터리 특성과 관련하여 분석해 보았다.

  • PDF

Thermal Performance Analysis of Hybrid heat Supply System for Zero Carbon Green Home (제로카본 그린홈 구현을 위한 하이브리드 열공급 시스템의 열성능 분석)

  • Joo, Hong-Jin;Lee, Kyoung-Ho;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.53-59
    • /
    • 2012
  • This study was carried out to evaluate thermal performance of the renewable hybrid heat supply system with solar thermal system and wood pellet boiler for Zero Carbon Green home of apartment houses. The hybrid heat supply system was set up at Korea Institute Energy Research in 2011. The system was comprised of the wood pellet boiler unit with heat capacity designed as 20,000kcal/hr, a $0.15m^3$ hot water storage tank for space heating, a evacuated tubular solar collector $3.74m^2$ of aperture area at the $20^{\circ}$ install angle, a $0.3m^3$ hot water storage tank. Thermal performance tests for one-house of apartment house were carried out by hot water load and heating load in winter season through the hybrid heat supply system. As a result, hot water energy supplied by the hybrid heat supply system was 11kWh in a day. Solar thermal energy portion was 2.99kWh which is 27% of the total hot water energy supply. wood pellet boiler supply portion was 8.017kWh which is 73% of the total hot water energy supply.

A Study on Optimization Design of Off-grid Hybrid Power Generation System (독립형 하이브리드발전시스템 최적설계에 관한 연구)

  • Jeong, Moon-Seon;Moon, Chae-Joo;Chang, Young-Hak;Park, Tae-Sik;Lee, Suk-Hee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.2
    • /
    • pp.247-252
    • /
    • 2015
  • The majority of electric power in the domestic manned islands with off-grid power system is supplied by the diesel generators. However, in the case of off-grid islands the fuel cost is more expensive to inland areas and difficult to transport them to islands. So the development of renewable energy system using natural resource have been recently introduced. But renewable energy that depend on the natural environment, it is necessary to organized the hybrid system with existing diesel engine because the energy is difficult to maintain stable electric power. This paper presents the results of a feasibility study of hybrid system with energy storage system such as wind, solar, battery and diesel engine. The study included off-grid island as the Seogeochado islands located in Jeolanamdo Province. And, the paper proposed a optimal capacity of hybrid system configuration to maintain carbon free with minimum investment cost. the analysis of economic adaptability performed by HOMER program.

Development of Hybrid BMS(Battery Management System) Algorithm for Lead-acid and Lithium-ion battery (연축전지와 리튬이온전지용 하이브리드 BMS 알고리즘 개발)

  • Oh, Seung-Taek;Kim, Byung-Ki;Park, Jae-Beom;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3391-3398
    • /
    • 2015
  • Recently, the large scaled lead-acid battery is widely introduced to efficient operation of the photovoltaic system in many islands. but the demand of lithium-ion battery is getting increased by the operation of wind power and replacement of the lead-acid battery. And also, under the renewable portfolio standard(RPS) and energy efficiency resource standard(EERS) policy of Korea government, the introduction of energy storage system(ESS) has been actively increased. Therefore, this paper presents the operation algorithm of hybrid battery management system(BMS) using the lead-acid and lithium-ion batteries, in order to maximize advantage of each battery. In other words, this paper proposed the algorithm of state of charge(SOC) and hybrid operation algorithm to calculate the optimal composition rate considering the fixed cost and operation cost of each battery. From the simulation results, it is confirmed that the proposed algorithms are an effective tool to evaluate SOC and to optimally operate hybrid ESS.

Performance Evaluation of Hybrid Solar Air-Water Heater when the Heated Air is used as Inlet Air during Air and Water is Heated Simultaneously (가열 공기 유입에 따른 복합형 태양열 가열기 공기-물 제조 성능에 관한 연구)

  • Choi, Hwi-Ung;Yoon, Jung-In;Son, Chang-Hyo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.5
    • /
    • pp.21-29
    • /
    • 2015
  • In this study, the performance of hybrid solar air-water heater when the heated air was used as inlet air was investigated during air and liquid were heated simultaneously. Temperature difference between inlet air and ambient was set as $0^{\circ}C$, $13^{\circ}C$ and $22^{\circ}C$ and it was maintained during the daily operation. As a result, thermal efficiency of liquid heating was increased when the inlet air temperature was increased and heat gain of the water in heat storage tank was also increased with increment of temperature difference between inlet air and ambient temperature. On the contrary to this, the decrement of air heating efficiency and total efficiency of collector was confirmed with increment of inlet air temperature and it is considered that heat gain of liquid side is lower than heat loss of air side that occurring by using heated air as inlet air of collector. So, from these results, maximum temperature that the liquid in heat storage tank can reach was expected to increase if the return air or any heated air was used as inlet air. But air and total efficiency of hybrid solar air-water is decreased, so using outdoor air as inlet air is considered as better way on perspective of using of solar thermal energy by hybrid solar collector. However, it is hard to conclude that using outdoor air is better than heated air on the perspective of energy saving of building because the performance of heat storage performance was increased even air and total thermal efficiency was decreased, so the necessity of more profound consideration about these result in further research was confirmed for putting the hybrid solar air-water heater to practical use.

Pt/MOF-5 Hybrid Composite Encapsulated with Microporous Carbon Black to Improve Hydrogen Storage Capacity and Hydrostability

  • Yeo, Sin-Yeong;Gwak, Seung-Yeop
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.45.2-45.2
    • /
    • 2011
  • Metal organic frameworks (MOF) have generated considerable interests as a potential candidate for hydrogen storage owing to their extremely high surface-to-volume ratio and low density. In this study, Pt nanoparticles of about 3 nm in size were introduced outside MOF-5 [$Zn_4O$(1,4-benzenedicarbocylate)3], which was then encapsulated with hydrophobic microporous carbon black (denoted CB@Pt/MOF-5) in order to enhance hydrogen uptake capacity without decreasing the specific surface area and hydrostability. To study the chemical composition, morphology, crystal information, and properties of the synthesized material, a variety of techniques is employed, including WXRD, XPS, ICP-AES, FE-SEM, HR-TEM, and N2 adsorption-desorption, confirming the formation of novel hybrid composite designated CB@Pt/MOF-5 with highly crystalline structure, large specific surface area and pore volume. In addition, $H_2$ storage capacity for resulting material was measured using magnetic suspension microbalance at 77 and 298 K under high-pressure condition, and the hydrostability was also tested by exposing the sample to 33% relative humidity at $23^{\circ}C$ and measuring XRD as a function of time.

  • PDF

Exergetic design and analysis of a nuclear SMR reactor tetrageneration (combined water, heat, power, and chemicals) with designed PCM energy storage and a CO2 gas turbine inner cycle

  • Norouzi, Nima;Fani, Maryam;Talebi, Saeed
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.677-687
    • /
    • 2021
  • The tendency to renewables is one of the consequences of changing attitudes towards energy issues. As a result, solar energy, which is the leader among renewable energies based on availability and potential, plays a crucial role in full filing global needs. Significant problems with the solar thermal power plants (STPP) are the operation time, which is limited by daylight and is approximately half of the power plants with fossil fuels, and the capital cost. Exergy analysis survey of STPP hybrid with PCM storage carried out using Engineering Equation Solver (EES) program with genetic algorithm (GA) for three different scenarios, based on eight decision variables, which led us to decrease final product cost (electricity) in optimized scenario up to 30% compare to base case scenario from 28.99 $/kWh to 20.27 $/kWh for the case study. Also, in the optimal third scenario of this plant, the inner carbon dioxide gas cycle produces 1200 kW power with a thermal efficiency of 59% and also 1000 m3/h water with an exergy efficiency of 23.4% and 79.70 kg/h with an overall exergy efficiency of 34% is produced in the tetrageneration plant.