• Title/Summary/Keyword: Hybrid Process

Search Result 1,925, Processing Time 0.032 seconds

A Study on the Performance Improvement of Fuzzy Controller Using Genetic Algorithm and Evolution Programming (유전알고리즘과 진화프로그램을 이용한 퍼지제어기의 성능 향상에 관한 연구)

  • 이상부;임영도
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.58-64
    • /
    • 1997
  • FLC(Fuzzy Logic Controller) is stronger to the disturbance than a classical controller and its overshoot of the intialized value is excellent. In case an unknown process or the mathematical modeling of a complicated system is impossible, a fit control quantity can be acquired by the Fuzzy inference. But FLC can not converge correctly to the desirable value because the FLC's output value by the size of the quantization level of the Fuzzy variable always has a minor error. There are many ways to eliminate the minor error, but I will suggest GA-FLC and EP-FLC Hybrid controller which csombines FLC with GA(Genetic Algorithm) and EP(Evo1ution Programming). In this paper, the output characteristics of this Hybrid controller will be compared and analyzed with those of FLC, it will he showed that this Hybrid controller converge correctly to the desirable value without any error, and !he convergence speed performance of these two kinds of Hyhrid controller also will be compared.

  • PDF

Performance Analysis of Hybrid SOFC/Uncooled GT System for Marine Power Applications (선박동력용 SOFC/GT(무냉각) 하이브리드시스템의 성능 평가)

  • Kim, Myoung-Hwan;Kil, Byung-Lea
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1050-1060
    • /
    • 2012
  • As an approach to high-efficiency of SOFC system, SOFC/GT Hybrid system is effective. However, if the output size of the system belongs to the marine class of dozens MWs, the introduction of the cooling system of GT system, which is used as sub-system, makes its related devices complicated and also makes its control difficult. Accordingly, for the marine use, SOFC/GT (non-cooling)Hybrid system looks more suitable than SOFC/GT(cooling)Hybrid system. This study established the SOFC/GT (non-cooling)Hybrid system, and examined the operating temperature & current density of the stack for the system, pressure ratio of the gas turbine, the influence of TIT(Turbine Inlet Temperature) on system performance, etc. through the simulation process. Through this research process, this study was able to confirm that electrical efficiency rises in spite of the increase in the required power for the air compressor, and there exists a limited range of temperatures for operation in TIT.

Study for Organic(Bio)-Inorganic Nano-Hybrid OMC

  • Lee, Jung-Eun;Ji, Hong-Geun;Park, Yoon-Chang;Lee, Kyoung-Chul;Yoo, Eun-Ah
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.178-191
    • /
    • 2003
  • OMC is essentialiy necessary compound in sun goods as organic UV protecting products. But the skin-trouble problem is raising because of skin penetration of OMC. In this study, non-capsulated pure OMC was compared with Organic-Inorganic-Nano-hybrid OMC for skin penetration force and SPF degree. Organic- Inorganic Nano-Hybrid OMC is OMC trapped in the pore of the mesoporous silica synthesized by the sol-gel method after OMC is nanoemulsified in the system of the hydrogenated Lecithin/ Ethanol/caprylic/capric triglyceride/OMC/water. OMC- nano- emulsion was obtained by a microfluidizing process at 1000bar and then micelle size in the nanoemulsion solution is 100-200nm range. Mesoporous silica nano-hybrid OMC was prepared by the process; surfactant was added in dissolved OMC-Nanoemulsion, then the rod Micelle was formed. OMC-nanoemulsion was capsulated in this rod Micelle and then silica precursor was added in the OMC-nanoemulsion solution. Through the hydrolysis reaction of the silica precursor, mesoporous silica concluding OMC-Nanocapsulation was obtained. The nano-hybrid surface of this OMC-Nanoemulsion-Inorganic system was treated with polyalkyl-silane compound. OMC-Mesoporous silica Nano-hybrids coated with polyalkyl-silane compound show the higher sun protecting factor (SPF Analyzer: INDEX 10-15) than pure OMC and could reduce a skin penetration of OMC. The physico-chemical properties of these nano-hybrids measured on the SPF index, partical size, strcture, specific surface area, pore size, morphology, UV absorption, rate of the OMC dissolution using SPF Analyzer, Laser light scattering system, XRD, BET, SEM, chroma Meter, HPLC, Image analyzer, microfluidizer, UV/VIS. spectrometer.

  • PDF

Development of Finite Element Model of Hybrid III 5th Percentile Female Dummy (Hybrid III 5% 성인 여성 더미의 유한요소 모델 개발)

  • Yi, Sang-Il;Mohan, Pradeep K.;Kan, Cing-Dao Steve;Park, Gyung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.18-30
    • /
    • 2010
  • As the automobile industry is developing, the number of deaths and injuries has increased. To reduce the damages from automobile accidents, the government of each country proposes experimental conditions for reproducing the accident and establishes the vehicle safety regulations. Automotive manufacturers are trying to make safer vehicles by satisfying the requirements. The Hybrid III crash test dummy is a standard Anthropomorphic Test Device (ATD) used for measuring the occupant's injuries in a frontal impact test. Since a real crash test using a vehicle is fairly expensive, a computer simulation using the Finite Element Method (F.E.M.) is widely used. Therefore, a detailed and robust F.E. dummy model is needed to acquire more accurate occupant injury data and behavior during the crash test. To achieve this goal, a detailed F.E. model of the Hybrid III 5th percentile female dummy is constructed by using the reverse engineering technique in this research. A modeling process is proposed to construct the F.E. model. The proposed modeling process starts from disassembling the physical dummy. Computer Aided Design (CAD) geometry data is constructed by three-dimensional (3-D) scanning of the disassembled physical dummy model. Based on the geometry data, finite elements of each part are generated. After mesh generation, each part is assembled with other parts using the joints and rigid connection elements. The developed F.E. model of dummy is simulated based on the FMVSS 572 validation regulations. The results of simulation are compared with the results of physical tests.

A Study on the Process of Hybrid Welding Using Pulsed Nd:YAG Laser and Dip-transfer DC GMA Heat Sources (펄스형 Nd:YAG 레이저와 단락이행모드의 직류 GMA 열원을 이용한 하이브리드 용접 공정에 대한 연구)

  • Cho, Won-Ik;Na, Suck-Joo
    • Journal of Welding and Joining
    • /
    • v.25 no.6
    • /
    • pp.71-77
    • /
    • 2007
  • Until now, many researches on laser-arc hybrid welding processes have been conducted mainly for high power CW laser and high direct current arc to weld the thick steel plates for shipbuilding. Recently, however the usage of thin steel plates, which tend to be deformed easily by thermal energy, is been increasing because of demand of light structure such as car body in the automobile industry. Accordingly, heat sources having relatively low heat input such as pulsed laser, dip-transfer DC GMA and pulsed GMA seem to be applied more increasingly and the study about those heat sources is needed more intensively. Any heat source mentioned above can not stand alone without weld defects at a relatively high welding speed for increasing the welding productivity. This is main reason to apply the hybrid welding process which uses pulsed laser and low-heat-input GMA heat sources simultaneously to weld the thin steel plate. In this study, parameters of pulsed laser and dip-transfer DC GMA welding are studied firstly through preliminary experiments, and then analyzed in the viewpoint of their physical phenomena. Before conducting the hybrid welding, a pulse control technique is developed based on the parallel port communication and Visual C++ 6.0. Owing to development of this technique, interactions of laser and arc pulses can be controlled consistently. Using the pulse control technique, the hybrid welding is conducted and then its interactive welding phenomenon is analyzed.

A decision making framework model for the selection of a RP using hybrid multiple attribute decision making techniques (3차원 조형장비 선정을 위한 복합 다요소 의사결정 구조 모델 개발에 관한 연구)

  • Byun, Hong-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.87-95
    • /
    • 2008
  • The purpose of this study is to provide a decision support to select an appropriate rapid prototyping(RP) machine that suits the application of a part. Selection factors include concept model, form/fit/functional model, pattern model for molding, material property, build time and part cost that greatly affect the performance of RP machines. However, the selection of a RP is not an easy decision because they are uncertain and vague. For this reason, the aim of this research is to propose hybrid multiple attribute decision making approaches to effectively evaluate RP machines. In addition, because subjective considerations are relevant to selection decision, a fuzzy logic approach is adopted. The proposed selection procedure consists of several steps. First, we identify RP machines that the users consider. After constructing the evaluation criteria, we calculate the weights of the criteria by applying the fuzzy Analytic Hierarchy Process(AHP) method. Finally, we construct the fuzzy Technique of Order Preference by Similarity to Ideal Solution(TOPSIS) method to achieve the ranking order of all machines providing the decision information for the selection of RP machines.

  • PDF

A Study on the Effect of Complementary Bundling Based on the Categorization of the New Hybrid IT Product (하이브리드 IT신제품의 범주화에 따른 보완재 번들링의 효과성에 관한 연구)

  • Park, Yoonseo;Kim, Yongsik
    • Journal of Information Technology Services
    • /
    • v.13 no.4
    • /
    • pp.19-43
    • /
    • 2014
  • Categorization means the process labeling or identifying an object based on what people already know or its similarity for people to be easily perceptible in external environment. If it is categorized, it is schematically conjectured from typical characteristic of the category. In this sense, the categorization of new products has an important effect upon the market performance. Nevertheless, the categorization of innovative new products is not easy and occasionally very ambiguous. In this study, we discuss how to strengthen the categorization strategy of new hybrid IT products through complementary bundling. The model of this study is based on Technology Acceptance Model (TAM) with resistance variable and verifies the statistical significance by undertaking a survey on consumers' awareness. In addition, we review the moderating effects of prior knowledge in the adoption process of complementary bundling. Through this analysis, we find out the structural relationship among the factors affecting adoption of complementary bundling. Also, it show that the influence of prior knowledge in respect of the adoption process is greater than others in case that there exists significant heterogeneity among strategic categories and complements. In conclusion, these findings suggest the following managerial implication. The categorization strategy of new hybrid IT product can be enhanced by complementary bundling, but the suitability among strategic category and complements should be evaluated exhaustively.

Microstructure of the Hybrid Al2O3-TiC/Al Composite by Rapid Solidification and Stone Mill Process. (급속응고 및 Stone Mill 공정에 의해 제조된 하이브리드 Al2O3-TiC/Al 복합재료의 미세조직)

  • 김택수;이병택;조성석;천병선
    • Journal of Powder Materials
    • /
    • v.10 no.1
    • /
    • pp.15-20
    • /
    • 2003
  • Hybrid $A1_2O_3-TiC$ ceramic particle reinforced 6061 and 5083 Al composite powders were prepared by the combination of twin rolling and stone mill crushing process, followed by consolidating processes of cold compaction, degassing and hot extrusion. The composite bar consists of lamellar structure of ceramic particle rich area and matrix area, in which the hybrid was decomposed into each TiC of about $3-4\mutextrm{m}$ and $AI_2O_3$ particles of about $1-2\mutextrm{m}$ in diameter. It also found that fine $Mg_2Si$ precipitates of about 30 nm were embedded in the matrix, which have grains of about 3 $\mutextrm{m}$. Higher UTS was measured at the 5083 composite bar compared to the conventionally fabricated composite, due to again refinement effect by the rapid solidification. No particle was shown to form in the interface between the matrix and reinforcement, whereas carbon was diffused into the matrix.

Study on the Heat Dissipation Behavior of Diecast Mg Inverter Housing for Eco-friendly Hybrid Vehicles (친환경 전기 하이브리드 자동차용 마그네슘 다이캐스팅 인버터 하우징의 열방출 특성)

  • Cho, In-Sung;Han, Yo-Sub;Lee, Seung-Jae;Lee, Byung-jun
    • Journal of Korea Foundry Society
    • /
    • v.38 no.3
    • /
    • pp.60-65
    • /
    • 2018
  • In the present study, the characteristics of Mg inverter cases for hybrid cars are investigated. Concerns over the use of lightweight materials to reduce energy use and to mitigate emission problems are inevitable in the twenty-first century. Magnesium is a promising material for the manufacturing of lightweight parts. Several cases for thermal cooling channels have been designed and simulated, and the effects of materials and coatings on the thermal cooling efficiency have been discussed. The effects of the coating thickness on heat extraction in an Mg inverter housing case using the PEO (plasma electrolyte oxidation) coating method were also discussed. In order to produce an inverter case by the diecasting process, the filling sequence and cooling behavior during the diecasting process were simulated. The optimized process conditions from the simulation result were then used in a trial diecasting experiment.