DOI QR코드

DOI QR Code

Microstructure of the Hybrid Al2O3-TiC/Al Composite by Rapid Solidification and Stone Mill Process.

급속응고 및 Stone Mill 공정에 의해 제조된 하이브리드 Al2O3-TiC/Al 복합재료의 미세조직

  • 김택수 (공주대학교 신소재공학부) ;
  • 이병택 (공주대학교 신소재공학부) ;
  • 조성석 (충남대학교 급속응고신소재연구소) ;
  • 천병선 (충남대학교 급속응고신소재연구소)
  • Published : 2003.02.01

Abstract

Hybrid $A1_2O_3-TiC$ ceramic particle reinforced 6061 and 5083 Al composite powders were prepared by the combination of twin rolling and stone mill crushing process, followed by consolidating processes of cold compaction, degassing and hot extrusion. The composite bar consists of lamellar structure of ceramic particle rich area and matrix area, in which the hybrid was decomposed into each TiC of about $3-4\mutextrm{m}$ and $AI_2O_3$ particles of about $1-2\mutextrm{m}$ in diameter. It also found that fine $Mg_2Si$ precipitates of about 30 nm were embedded in the matrix, which have grains of about 3 $\mutextrm{m}$. Higher UTS was measured at the 5083 composite bar compared to the conventionally fabricated composite, due to again refinement effect by the rapid solidification. No particle was shown to form in the interface between the matrix and reinforcement, whereas carbon was diffused into the matrix.

Keywords

References

  1. JSAE Review v.23 H. Nakanishi;K. Kakihara;A. Nakayama;T. Murayama https://doi.org/10.1016/S0389-4304(02)00203-5
  2. Metal. & Mat. Trans. A. v.33A H. R. Shakeri;Z. Wang
  3. Mat. Sci. Eng., R:Report v.29 S. C. Tjong;Z. Y.Ma https://doi.org/10.1016/S0927-796X(00)00024-3
  4. Materials & Design v.23 N. Aniban;R. M. Pillai;B. C. Pai https://doi.org/10.1016/S0261-3069(02)00024-9
  5. Mater. Trans. v.33 K. Suganuma;G. Sasski;T. Fujita;M. Tokuse https://doi.org/10.2320/matertrans1989.33.659
  6. Acta Metall. v.36 T. Christman;S. Suresh
  7. Composites Part A: Appl. Sci. & Manuf. v.32 A. R. Kennedy;S. M. Wyatt https://doi.org/10.1016/S1359-835X(00)00052-X
  8. J. Compo. Mater. v.22 I. Dutta;D. L. Bourell;D. Latimer
  9. Composites Sci. and Tech. v.61 G. Gouadec;S. Karlin;J. Wu;M. Parlier;Ph. Colomban https://doi.org/10.1016/S0266-3538(00)00112-3
  10. Acta Metall. Mater. v.39 R. J. Arosenault;L. Wang;C. R. Reng https://doi.org/10.1016/0956-7151(91)90327-W
  11. Metall. Trans. A. v.21 H. Ribes;M. Surey;G. LEsperance;J. G. Legoux https://doi.org/10.1007/BF02646993
  12. Mater. Sci. Eng. A v.304 J. H. Lee;T. S. Kim;S. J. Hong;D. Y. Maeng;H. T. Son;C. W. Won;S.S. Cho;B. S. Chun https://doi.org/10.1016/S0921-5093(00)01549-5
  13. Metall. & Mater. Trans. A v.26 W. M. Zhong;G. LEsperance;M. Surey https://doi.org/10.1007/BF02669421
  14. Mater. Sci. Eng. A v.304 D. Y. Maeng;J. H. Lee;T. S. Kim;H. T. Son;S. J. Hong;C. W. Won;S. S. Cho;B. S. Chun https://doi.org/10.1016/S0921-5093(00)01535-5
  15. Mat. Trans. v.34 D. Yu;T. Chandra