• Title/Summary/Keyword: Hybrid Power Management

Search Result 154, Processing Time 0.028 seconds

A Feasibility Study of Low-Cost Hybrid Fuel-Cell System for Ship Auxiliary Power (선박 보조전원을 위한 저가형 하이브리드 연료전지 시스템 적용 타당성 연구)

  • Yang, Geun Ryoung;An, Sang Yong;Choo, Jin Hoon
    • New & Renewable Energy
    • /
    • v.9 no.4
    • /
    • pp.3-12
    • /
    • 2013
  • This paper proposes the hybrid fuel cell system that can solve disadvantages of existing fuel cell system and ensure high reliability and high stability. The system consists of PEM fuel cell, Ni-MH battery and power management system. In this system, when the power provided from the fuel cell is higher than the load power, the extra energy may be used to charge the Ni-MH battery. When the fuel cell can not provide enough energy to the load, the shortage of energy will be supplied by the Ni-MH battery. Experimental results show that the output voltage is regulated well during load variations. Also, high system efficiency is achieved.

A PCS Control Strategy for Hybrid ESS with Function of Emergency Power Supply (비상전원 기능을 갖는 하이브리드 ESS를 위한 PCS 제어전략)

  • Kim, Sang-Jin;Kwon, Min-Ho;Choi, Se-Wan;Paik, Seok-Min;Kim, Mi-Sung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.4
    • /
    • pp.302-311
    • /
    • 2016
  • This paper proposes a hybrid ESS that integrates an energy storage system (ESS) with an uninterruptible power supply (UPS). The hybrid ESS has a demand management and emergency power supply function while increasing the battery utilization of the UPS, which has just been used in a power failure. In addition to the critical load, the proposed system augments the capacity of emergency generation using an additional load, which has voltage and frequency-dependent characteristics to the grid side. The control algorithm of the AC-DC converter and bidirectional DC-DC converter is proposed for demand management and emergency power supply. Furthermore, seamless and autonomous transfer methods to alleviate the transient during mode transfer are proposed. To validate the proposed control scheme, experimental results from a 5 kW prototype are provided.

Control Algorithm of Hybrid System for Feeder Flow Mode Operation in Microgrid (마이크로그리드에서 하이브리드 시스템의 Feeder Flow Mode 운영을 위한 제어 알고리즘)

  • Moon, Dae-Seong;Seo, Jae-Jin;Kim, Yun-Seong;Won, Dong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Active power control scheme for distributed generation in microgrid consists of feeder flow control and unit power control. Feeder flow control is more useful than the unit power control for demand-side management, because microgrid can be treated as a dispatchable load at the point of common coupling(PCC). This paper presents detailed descriptions of the feeder flow control scheme for the hybrid system in microgrid. It is divided into three parts, namely, the setting of feeder flow reference range for stable hybrid system operation, feeder flow control algorithm depending on load change in microgrid and hysteresis control. Simulation results using the PSCAD/EMTDC are presented to validate the inverter control method for a feeder flow control mode. As a result, the feeder flow control algorithm for the hybrid system in microgrid is efficient for supplying continuously active power to customers without interruption.

A Simple Power Management Scheme with Enhanced Stability for a Solar PV/Wind/Fuel Cell Fed Standalone Hybrid Power Supply using Embedded and Neural Network Controller

  • Thangavel, S.;Saravanan, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1454-1470
    • /
    • 2014
  • This paper propose a new power conditioner topology with intelligent power management controller that integrates multiple renewable energy sources such as solar energy, wind energy and fuel cell energy with battery backup to make best use of their operating characteristics and obtain better reliability than that could be obtained by single renewable energy based power supply. The proposed embedded controller is programmed for maintaining a constant voltage at PCC, maximum power point tracking for solar PV panel and WTG and power flow control by regulating the reference currents of the controller on instantaneous basis based on the power delivered by the sources and load demand. Instantaneous variation in reference currents of the controller enhances the controller response as it accommodates the effect of continuously varying solar insolation and wind speed in the power management. The power conditioner uses a battery bank with embedded controller based online SOC estimation and battery charging system to suitably sink or source the input power based on the load demand. The simulation results of the proposed power management system for a standalone solar/WTG/fuel cell fed hybrid power supply with real time solar radiation and wind velocity data collected from solar centre, KEC for a sporadically varying load demand is presented in this paper and the results are encouraging in reliability and stability perspective.

Fuzzy Logic Based Energy Management For Wind Turbine, Photo Voltaic And Diesel Hybrid System

  • Talha, Muhammad;Asghar, Furqan;Kim, Sung Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.351-360
    • /
    • 2016
  • Rapid population growth with high living standards and high electronics use for personal comfort has raised the electricity demand exponentially. To fulfill this elevated demand, conventional energy sources are shifting towards low production cost and long term usable alternative energy sources. Hybrid renewable energy systems (HRES) are becoming popular as stand-alone power systems for providing electricity in remote areas due to advancement in renewable energy technologies and subsequent rise in prices of petroleum products. Wind and solar power are considered feasible replacement to fossil fuels as the prediction of the fuel shortage in the near future, forced all operators involved in energy production to explore this new and clean source of power. Presented paper proposes fuzzy logic based Energy Management System (EMS) for Wind Turbine (WT), Photo Voltaic (PV) and Diesel Generator (DG) hybrid micro-grid configuration. Battery backup system is introduced for worst environmental conditions or high load demands. Dump load along with dump load controller is implemented for over voltage and over speed protection. Fuzzy logic based supervisory control system performs the power flow control between different scenarios such as battery charging, battery backup, dump load activation and DG backup in most intellectual way.

Prospects of Japan's Electronic Vehicle Market: An Analysis Through Toyota Motors' Hybrid Vehicle Deployment (도요타의 하이브리드 자동차 보급 사례 분석을 통한 일본 전기자동차 시장에 대한 전망)

  • Ko, Woo Li;Kim, Kyunghwan
    • Journal of East Asia Management
    • /
    • v.5 no.1
    • /
    • pp.75-90
    • /
    • 2024
  • About 100 years after the start of mass production by American car maker Ford in 1913, the automobile industry has come to a major transformation in 100 years. In this transformation period, automakers are facing the biggest challenge of converting power sources, the basis of automobiles, from existing internal combustion engines to electric vehicles. Hybrid vehicles have been released in Japan since the late 1990s, and changes in automobile power sources have occurred early. In order to gain global leadership in hybrid vehicles, Japanese automakers and the Japanese government joined forces to promote the growth of the domestic hybrid vehicle market. The government has implemented a policy to substantially subsidize the high price of hybrid cars compared to internal combustion engine cars by providing purchase subsidies and tax benefits to buyers. Toyota has increased its line-up of hybrid cars around the Prius and has further strengthened communication with customers for the sale of hybrid vehicles. As a result of continuing these efforts for about 20 years, the percentage of Japan's hybrid vehicle market in 2022 reached 51% for passenger cars. Recently, each country has been setting and promoting aggressive goals for electric vehicles that require a wider range of physical and institutional infrastructure than hybrid vehicles. This study aims to assess the growth of electric vehicles by looking at the trend of hybrid vehicles and how they've been distributed in the Japanese market.

Hybrid Power Management System Using Fuel Cells and Batteries

  • Kim, Jae Min;Oh, Jin Seok
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.2
    • /
    • pp.122-128
    • /
    • 2016
  • In the future, hybrid power management systems using fuel cells (FCs) and batteries will be used as the driving power systems of ships. These systems consist of an FC, a converter, an inverter, and a battery. In general, an FC provides steady-state energy; a battery provides the dynamic energy in the start state of a ship for enabling a smooth operation, and provides or absorbs the peak or dynamic power when the load varies and the FC cannot respond immediately. The FC voltage range is very wide and depends on the load; Therefore, the FC cannot directly connect to the inverter. In this paper, we propose a power management strategy and design process involving a unidirectional converter, a bidirectional converter, and an inverter, considering the ship's operating conditions and the power conditions of the FC and the battery. The presented experimental results were verified through a simulation.

A Study on the BESS of Stand-alone Hybrid Streetlight (독립형 하이브리드 가로등의 BESS 연구)

  • Kim, Jaejin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.4
    • /
    • pp.1-8
    • /
    • 2019
  • In this paper, we study the BESS of a standalone hybrid street light. The proposed BESS proposed a BESS with the function of efficiently charging irregularly generated power from two or more generators. AC generated by wind power is converted to DC using an AC / DC converter and then to a voltage that can charge the battery through the DC / DC converter. The lack of voltage and current, which is a disadvantage of the MPPT method used in solar power generation, is compensated by the DC value of wind power generation. The compensation method is to convert the DC generated from solar power into a voltage suitable for charging the battery through a DC / DC converter, and then connect the DC generated in wind power in parallel to compensate for the insufficient current to charge the battery in a short time. Allow this to begin. By securing the maximum charging time, the usage time of the stand-alone hybrid street light is huge. Experimental results show that the battery has a short charging time and can be efficiently applied to battery-dependent standalone hybrid street lights.

Power Control and Dynamic Performance Analysis of a Grid-Interactive Wind/PV/BESS Hybrid System (계통연계형 풍력, 태양광 및 축전지 하이브리드 시스템의 출력제어 및 동특성 해석)

  • Kim, Seul-Ki;Jeon, Jin-Hong;Cho, Chang-Hee;Ahn, Jong-Bo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.317-324
    • /
    • 2007
  • Most conventional hybrid systems using renewable energy sources have been applied for stand-alone operation, but Utility-interface may be an useful and viable option for hybrid systems. Grid-connected operation may have benefits such as reduced losses in power system distribution, utility support in demand side management, and peak load shaving. This paper addresses power control and dynamic performance of a grid-connected PV/wind/BESS hybrid system. At all times the PV way and the wind turbine are individually controlled to generate the maximum energy from given weather conditions. The battery energy storage system (BESS) charges or discharges the battery depending on energy gap between grid invertger generation and production from the PV and wind system. The BESS should be also controlled without too frequently repeated shifts in operation mode, charging or discharging. The grid inverter regulates the generated power injection into the grid. Different control schemes of the grid inverter are presented for different operation modes, which include normal operation, power dispatching, and power smoothing. Simulation results demonstrate that the effectiveness of the proposed power control schemes for the grid-interactive hybrid system.

A Study on Power contorl for Hybrid electric propulsion system (하이브리드 전기 추진 시스템의 전력 제어에 관한 연구)

  • Oh, Jin-Seok;Jo, Kwan-Jun;Ham, Youn-Jae;Bae, Soo-Young;Lee, Ji-Young
    • Journal of Navigation and Port Research
    • /
    • v.32 no.10
    • /
    • pp.765-770
    • /
    • 2008
  • This paper presents the power control for the hybrid electric propulsion system. In this paper, the hybrid propulsion system consists cf the generator and battery as power supply system in ship. The hybrid control system is designed with energy saving algorithm for decreasing the power consumption of power supply system. This paper suggests the method to increase efficiency of hybrid electric propulsion system by developing battery charging system. The performance of power control system is analyzed with the experiment equipment for hybrid propulsion system, and the results showed a good property.