• Title/Summary/Keyword: Hybrid Manipulator

Search Result 73, Processing Time 0.021 seconds

Adaptive robust hybrid position/force control for a uncertain robot manipulator

  • Ha, In-Chul;Han, Myung-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.426-426
    • /
    • 2000
  • When real robot manipulators arc mathematically modeled, uncertainties are not avoidable. The uncertainties are often nonlinear and time varying, The uncertain factors come from imperfect knowledge of system parameters, payload change, friction, external disturbance and etc. We proposed a class of robust hybrid position/force control of manipulators and provided the stability analysis in the previous work. In the work, we propose a class of adaptive robust hybrid position/force control of manipulators with bound estimation and the stability based on Lyapunov function is presented. Especially, this controller does not need the information of uncertainty bound. The simulation results are provided to show the effectiveness of the algorithm.

  • PDF

Robust Hybrid Control for Uncertain Robot Manipulators (불확실 로봇 시스템의 견실 하이브리드 제어기 설계)

  • Han, Myung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.73-81
    • /
    • 1997
  • An new class of robust position/force hybrid control law is proposed for uncertain robot manipulators. The uncertainty is nonlinear and (plssibly fast) time-varying. Therefore, the uncertain factors such as imper- fect modeling, friction, payload change, and external disturbance are all addressed. Based on the possible bound of the uncertainty, the controller is constructed and the stability study based on Lyapunov function is presented. To show that the proposed control laws are indeed applicable, the theoretical result is applied to a SCARA-type robot manipulator and simulation result is presented.

  • PDF

Study on Propeller Grinding Applied by a High Stiffness Robot (고감성 로봇을 이용한 프로펠러 연삭에 관한 연구)

  • Lee, M.K.;Park, B.O.;Park, K.W.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.56-65
    • /
    • 1997
  • This paper presents the robot program for propeller grinding. A robot manipulator is constructed by combining a parallel and a serial mechanism to increase high sitffness as well as workspace. The robot program involves inverse/direct kinematics, velocity mapping, Jacobian, and etc. They are cerived in efficient formulations and implemented in a real time control. A velocity control is used to measure the hight of a propeller blade with a touch probe and a position control is performed to grind the surface of the blade.

  • PDF

Dynamic Modeling of Two Cooperating Flexible Manipulators

  • Kim, Jin-Soo;Uchiyama, Masaru
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.188-196
    • /
    • 2000
  • In this paper, our aim is to develop a model for two cooperating flexible manipulators handling a rigid object by using lumped parameters. This model is in turn analyzed on MATLAB. In order to validate the model, a precise simulation model is developed using $ADAMS^{TM}$ (Automatic Dynamic Analysis of Mechanical System). Moreover, to clarify the discussion, the motions of a dual-arm experimental flexible manipulator are considered. Using the developed model, we control a robotic system with a symmetric hybrid position/force control scheme. Finally, experiments and simulations are performed, and a comparison of simulation results with experimental results is given to a rerify the validity of our model.

  • PDF

A Study on Compliance Control of a SCARA Robot (스카라 로보르에 대한 순응성 제어에 관한 연구)

  • Yee, Yang-Hee;Do, Mi-Sun;Kim, Sung-Woo;Park, Mig-Non;Lee, Sang-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.514-517
    • /
    • 1990
  • In this paper, compliant motion control of a manipualator in manipulator is proposed by using the self-tuning adaptive controller. Compliant motion is needed in order to applicated to complicated and accurate fields such as assembly operation in which several parts are matched. For a control method of compliant motion hybrid control is used so forces and position control are proposed selectively through a closed feedback loop. By contacting with environment, the uncertainties higher. Self-tuning controller which adapts to variable dynamic response is applied to compliant motion control in order to satisfy the desired operation. The applicability of the suggested algorithm was confined by simulation of the contour tracking task of four joint manipulator.

  • PDF

Path-smoothing for a robot arm manipulator using a Gaussian process

  • Park, So-Youn;Lee, Ju-Jang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.4
    • /
    • pp.191-196
    • /
    • 2015
  • In this paper, we present a path-smoothing algorithm for a robot arm manipulator that finds the path using a joint space-based rapidly-exploring random tree. Unlike other smoothing algorithms which require complex mathematical computation, the proposed path-smoothing algorithm is done using a Gaussian process. To find the optimal hyperparameters of the Gaussian process, we use differential evolution hybridized with opposition-based learning. The simulation result indicates that the Gaussian process whose hyperparameters were optimized by hybrid differential evolution successfully smoothed the path generated by the joint space-based rapidly-exploring random tree.

The Gripping Force Control of Robot Manipulator Using the Repeated Learning Function Techniques (반복 학습기능을 이용한 로봇 매니퓰레이터의 파지력제어)

  • Kim, Tea-Kwan;Baek, Seung-Hack;Kim, Tea-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.1
    • /
    • pp.45-52
    • /
    • 2015
  • In this paper, the repeated learning technique of neural network was used for gripping force control algorithm. The hybrid control system was introduced and the manipulator's finger reorganized form 2 ea to 3 ea for comfortable gripping. The data was obtained using the gripping force of repeated learning techniques. In the fucture, the adjustable gripping force will be obtained and improved the accuracy using the artificial intelligence techniques.

A Study on the Implementation of Edge-Following Insertion and grinding Tasks Using Robot Force Control (로보트의 힘제어를 이용한 윤곽 추적, 삽입 및 그라인딩 작업의 구현에 관한 연구)

  • 정재욱;이범희;고명삼
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.2
    • /
    • pp.207-216
    • /
    • 1991
  • In the case that the robot manipulator should respond to the variance and uncertainty of the environment in performing preforming precision tasks, it is indispensable that the robot utilizes the various sensors for intrlligence. In this paper, the robot force control method is implemented with a force/torque sensor, two personal computers, and a PUMA 560 manipulator for performing the various application tadks. The hybrid position/force control method is used to control the force and position axis separately. An interface board is designed to read the force/torque sensor output into the computer. Since the two computers should exchange the information quickly, a common memory board is designed. Before the algorithms of application tasks are developed, the basic force commands must be supplied. Thus, the MOVE-UNTIL command is used at the discrete time instant and, the MOVE-COMPLY is used at the continuous time instant for receiving the force feedback information. Using the two basic force commands, three application algorithms are developed and implemented for edge-following, insertion, and grinding tasks.

  • PDF

A Real-Time Control Architecture for a Semi-Autonomous Underwater Vehicle (반자율 무인잠수정을 위한 실시간 제어 아키텍쳐)

  • LI JI-HONG;JEON BONG-HWAN;LEE PAN-MOOK;WON HONG-SEOK
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.198-203
    • /
    • 2004
  • This paper describes a real-time control architecture for DUSAUV (Dual Use Semi-Autonomous Underwater Vehicle), which has been developed at Korea Research Institute of Ships & Ocean Engineering (KRISO), KORDI, for being a test-bed oj development of technologies for underwater navigation and manipulator operation. DUSAUV has three built-in computers, seven thrusters for 6 degree of freedom motion control, one 4-function electric manipulator, one pan/tilt unit for camera, one ballasting motor, built-in power source, and various sensors such as IMU, DVL, sonar, and so on. A supervisor control system for GUI and manipulator operation is mounted on the surface vessel and communicates with vehicle through a fiber optic link. Furthermore, QNX, one of real-time operating system, is ported on the built-in control and navigation computers of vehicle for real-time control purpose, while MicroSoft OS product is ported on the supervisor system for GUI programming convenience. A hierarchical control architecture which consist of three layers (application layer, real-time layer, and physical layer) has been developed for efficient control system of above complex underwater robotic system. The experimental results with implementation of the layered control architecture for various motion control of DUSAUV in a basin of KRISO is also provided.

  • PDF

A Position/Force Control of Robotic Manipulators with Parameter Adaptation (파라미터 적응을 이용하는 로보트 매니퓰레이터의 위치/힘 제어)

  • Yu, Dong-Young;Kim, Eung-Seok;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.408-410
    • /
    • 1992
  • An adaptive hybrid position/force controller for constrained manipulator with uncertain dynamic model parameters and environment stiffness is presented. In this paper, the compliance frame model is constructed by independent positions and forces to be controlled. The adaptive controller based on this compliance frame dynamic model is designed. Lyapunov theory is used for controller design and Stability analysis.

  • PDF