• Title/Summary/Keyword: Hybrid Feature Detection

Search Result 51, Processing Time 0.024 seconds

Simple Online Multiple Human Tracking based on LK Feature Tracker and Detection for Embedded Surveillance

  • Vu, Quang Dao;Nguyen, Thanh Binh;Chung, Sun-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.6
    • /
    • pp.893-910
    • /
    • 2017
  • In this paper, we propose a simple online multiple object (human) tracking method, LKDeep (Lucas-Kanade feature and Detection based Simple Online Multiple Object Tracker), which can run in fast online enough on CPU core only with acceptable tracking performance for embedded surveillance purpose. The proposed LKDeep is a pragmatic hybrid approach which tracks multiple objects (humans) mainly based on LK features but is compensated by detection on periodic times or on necessity times. Compared to other state-of-the-art multiple object tracking methods based on 'Tracking-By-Detection (TBD)' approach, the proposed LKDeep is faster since it does not have to detect object on every frame and it utilizes simple association rule, but it shows a good object tracking performance. Through experiments in comparison with other multiple object tracking (MOT) methods using the public DPM detector among online state-of-the-art MOT methods reported in MOT challenge [1], it is shown that the proposed simple online MOT method, LKDeep runs faster but with good tracking performance for surveillance purpose. It is further observed through single object tracking (SOT) visual tracker benchmark experiment [2] that LKDeep with an optimized deep learning detector can run in online fast with comparable tracking performance to other state-of-the-art SOT methods.

Stress Level Based Emotion Classification Using Hybrid Deep Learning Algorithm

  • Sivasankaran Pichandi;Gomathy Balasubramanian;Venkatesh Chakrapani
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3099-3120
    • /
    • 2023
  • The present fast-moving era brings a serious stress issue that affects elders and youngsters. Everyone has undergone stress factors at least once in their lifetime. Stress is more among youngsters as they are new to the working environment. whereas the stress factors for elders affect the individual and overall performance in an organization. Electroencephalogram (EEG) based stress level classification is one of the widely used methodologies for stress detection. However, the signal processing methods evolved so far have limitations as most of the stress classification models compute the stress level in a predefined environment to detect individual stress factors. Specifically, machine learning based stress classification models requires additional algorithm for feature extraction which increases the computation cost. Also due to the limited feature learning characteristics of machine learning algorithms, the classification performance reduces and inaccurate sometimes. It is evident from numerous research works that deep learning models outperforms machine learning techniques. Thus, to classify all the emotions based on stress level in this research work a hybrid deep learning algorithm is presented. Compared to conventional deep learning models, hybrid models outperforms in feature handing. Better feature extraction and selection can be made through deep learning models. Adding machine learning classifiers in deep learning architecture will enhance the classification performances. Thus, a hybrid convolutional neural network model was presented which extracts the features using CNN and classifies them through machine learning support vector machine. Simulation analysis of benchmark datasets demonstrates the proposed model performances. Finally, existing methods are comparatively analyzed to demonstrate the better performance of the proposed model as a result of the proposed hybrid combination.

A Hybrid Proposed Framework for Object Detection and Classification

  • Aamir, Muhammad;Pu, Yi-Fei;Rahman, Ziaur;Abro, Waheed Ahmed;Naeem, Hamad;Ullah, Farhan;Badr, Aymen Mudheher
    • Journal of Information Processing Systems
    • /
    • v.14 no.5
    • /
    • pp.1176-1194
    • /
    • 2018
  • The object classification using the images' contents is a big challenge in computer vision. The superpixels' information can be used to detect and classify objects in an image based on locations. In this paper, we proposed a methodology to detect and classify the image's pixels' locations using enhanced bag of words (BOW). It calculates the initial positions of each segment of an image using superpixels and then ranks it according to the region score. Further, this information is used to extract local and global features using a hybrid approach of Scale Invariant Feature Transform (SIFT) and GIST, respectively. To enhance the classification accuracy, the feature fusion technique is applied to combine local and global features vectors through weight parameter. The support vector machine classifier is a supervised algorithm is used for classification in order to analyze the proposed methodology. The Pascal Visual Object Classes Challenge 2007 (VOC2007) dataset is used in the experiment to test the results. The proposed approach gave the results in high-quality class for independent objects' locations with a mean average best overlap (MABO) of 0.833 at 1,500 locations resulting in a better detection rate. The results are compared with previous approaches and it is proved that it gave the better classification results for the non-rigid classes.

A New Approach for Information Security using an Improved Steganography Technique

  • Juneja, Mamta;Sandhu, Parvinder Singh
    • Journal of Information Processing Systems
    • /
    • v.9 no.3
    • /
    • pp.405-424
    • /
    • 2013
  • This research paper proposes a secured, robust approach of information security using steganography. It presents two component based LSB (Least Significant Bit) steganography methods for embedding secret data in the least significant bits of blue components and partial green components of random pixel locations in the edges of images. An adaptive LSB based steganography is proposed for embedding data based on the data available in MSB's (Most Significant Bits) of red, green, and blue components of randomly selected pixels across smooth areas. A hybrid feature detection filter is also proposed that performs better to predict edge areas even in noisy conditions. AES (Advanced Encryption Standard) and random pixel embedding is incorporated to provide two-tier security. The experimental results of the proposed approach are better in terms of PSNR and capacity. The comparison analysis of output results with other existing techniques is giving the proposed approach an edge over others. It has been thoroughly tested for various steganalysis attacks like visual analysis, histogram analysis, chi-square, and RS analysis and could sustain all these attacks very well.

Building Detection by Convolutional Neural Network with Infrared Image, LiDAR Data and Characteristic Information Fusion (적외선 영상, 라이다 데이터 및 특성정보 융합 기반의 합성곱 인공신경망을 이용한 건물탐지)

  • Cho, Eun Ji;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.635-644
    • /
    • 2020
  • Object recognition, detection and instance segmentation based on DL (Deep Learning) have being used in various practices, and mainly optical images are used as training data for DL models. The major objective of this paper is object segmentation and building detection by utilizing multimodal datasets as well as optical images for training Detectron2 model that is one of the improved R-CNN (Region-based Convolutional Neural Network). For the implementation, infrared aerial images, LiDAR data, and edges from the images, and Haralick features, that are representing statistical texture information, from LiDAR (Light Detection And Ranging) data were generated. The performance of the DL models depends on not only on the amount and characteristics of the training data, but also on the fusion method especially for the multimodal data. The results of segmenting objects and detecting buildings by applying hybrid fusion - which is a mixed method of early fusion and late fusion - results in a 32.65% improvement in building detection rate compared to training by optical image only. The experiments demonstrated complementary effect of the training multimodal data having unique characteristics and fusion strategy.

Theoretical and experimental study on damage detection for beam string structure

  • He, Haoxiang;Yan, Weiming;Zhang, Ailin
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.327-344
    • /
    • 2013
  • Beam string structure (BSS) is introduced as a new type of hybrid prestressed string structures. The composition and mechanics features of BSS are discussed. The main principles of wavelet packet transform (WPT), principal component analysis (PCA) and support vector machine (SVM) have been reviewed. WPT is applied to the structural response signals, and feature vectors are obtained by feature extraction and PCA. The feature vectors are used for training and classification as the inputs of the support vector machine. The method is used to a single one-way arched beam string structure for damage detection. The cable prestress loss and web members damage experiment for a beam string structure is carried through. Different prestressing forces are applied on the cable to simulate cable prestress loss, the prestressing forces are calculated by the frequencies which are solved by Fourier transform or wavelet transform under impulse excitation. Test results verify this method is accurate and convenient. The damage cases of web members on the beam are tested to validate the efficiency of the method presented in this study. Wavelet packet decomposition is applied to the structural response signals under ambient vibration, feature vectors are obtained by feature extraction method. The feature vectors are used for training and classification as the inputs of the support vector machine. The structural damage position and degree can be identified and classified, and the test result is highly accurate especially combined with principle component analysis.

Joint Detection Technique Effective to Other Cell Interference in the Next Generation Hybrid TD-CDMA Mobile Communication Systems (차세대 복합 시분할 부호분할 이동통신 시스템에서 타 셀 간섭에 효율적인 결합검출 기법)

  • Chang Jin-Weon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.42-48
    • /
    • 2006
  • In this paper a joint detection method for other cell interference cancellation is proposed in the next generation hybrid TD-CDMA mobile communication systems. A joint detection technique, a most characteristic feature of hybrid TD-CDMA mobile communication systems. retrieves users' data in the same time slot simultaneously with the elimination of multiple user interference. Previously a two stage joint detection method was proposed to cancel other cell interference as well as multiple user interference in the target cell. However the previous scheme does not have concrete ways to recognize other cell users who give major interference to the target cell. Thus all users in neighbor other cells has to be jointly detected and it causes huge complexity of the two stage joint detection. In this paper a method is proposed to perform two stage joint detection according to users' interference with the target cell. Performances of the proposed scheme are investigated through simulations and compared to the previous method the proposed method has no performance degradation and also lower the complexity of two stage joint detection significantly.

Robust Features Extraction by Human-based Hybrid Silhouette (하이브리드 실루엣 기반 인간의 강인한 특징 점 추출)

  • Kim, Jong-Seon;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.433-438
    • /
    • 2009
  • In this paper, we propose the robust features extraction method of human by using the skeleton model and hybrid silhouette model. The proposed feature extraction method is divided by hands, shoulder line and elbow region extraction. We use the peer's color information to find the position of hands and propose the circle detection method to extract the shoulder line and elbow. Finally, we show the effectiveness and feasibility of the proposed method through some experiments.

Abnormal Crowd Behavior Detection Using Heuristic Search and Motion Awareness

  • Usman, Imran;Albesher, Abdulaziz A.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.131-139
    • /
    • 2021
  • In current time, anomaly detection is the primary concern of the administrative authorities. Suspicious activity identification is shifting from a human operator to a machine-assisted monitoring in order to assist the human operator and react to an unexpected incident quickly. These automatic surveillance systems face many challenges due to the intrinsic complex characteristics of video sequences and foreground human motion patterns. In this paper, we propose a novel approach to detect anomalous human activity using a hybrid approach of statistical model and Genetic Programming. The feature-set of local motion patterns is generated by a statistical model from the video data in an unsupervised way. This features set is inserted to an enhanced Genetic Programming based classifier to classify normal and abnormal patterns. The experiments are performed using publicly available benchmark datasets under different real-life scenarios. Results show that the proposed methodology is capable to detect and locate the anomalous activity in the real time. The accuracy of the proposed scheme exceeds those of the existing state of the art in term of anomalous activity detection.

Fire Detection Based on Image Learning by Collaborating CNN-SVM with Enhanced Recall

  • Yongtae Do
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.119-124
    • /
    • 2024
  • Effective fire sensing is important to protect lives and property from the disaster. In this paper, we present an intelligent visual sensing method for detecting fires based on machine learning techniques. The proposed method involves a two-step process. In the first step, fire and non-fire images are used to train a convolutional neural network (CNN), and in the next step, feature vectors consisting of 256 values obtained from the CNN are used for the learning of a support vector machine (SVM). Linear and nonlinear SVMs with different parameters are intensively tested. We found that the proposed hybrid method using an SVM with a linear kernel effectively increased the recall rate of fire image detection without compromising detection accuracy when an imbalanced dataset was used for learning. This is a major contribution of this study because recall is important, particularly in the sensing of disaster situations such as fires. In our experiments, the proposed system exhibited an accuracy of 96.9% and a recall rate of 92.9% for test image data.