International Journal of Computer Science & Network Security
/
제22권5호
/
pp.348-358
/
2022
Software fault prediction is a method to compute fault in the software sections using software properties which helps to evaluate the quality of software in terms of cost and effort. Recently, several software fault detection techniques have been proposed to classifying faulty or non-faulty. However, for such a person, and most studies have shown the power of predictive errors in their own databases, the performance of the software is not consistent. In this paper, we propose a hybrid soft computing technique for SFP based on optimal feature extraction and classification (HST-SFP). First, we introduce the bat induced butterfly optimization (BBO) algorithm for optimal feature selection among multiple features which compute the most optimal features and remove unnecessary features. Second, we develop a layered recurrent neural network (L-RNN) based classifier for predict the software faults based on their features which enhance the detection accuracy. Finally, the proposed HST-SFP technique has the more effectiveness in some sophisticated technical terms that outperform databases of probability of detection, accuracy, probability of false alarms, precision, ROC, F measure and AUC.
고차원 데이터에서는 데이터마이닝 기법 중에서 특징 선택은 매우 중요한 과정이 되었다. 그러나 전통적인 단일 특징 선택방법은 더 이상 효율적인 특징선택 기법으로 적합하지 않을 수 있다. 본 논문에서 우리는 고차원 데이터에 대한 효율적인 특징선택을 위하여 혼합형 특징선택 기법을 제안하였다. 본 논문에서는 KNHANES 데이터에 제안한 혼합형 특징선택기법을 적용하여 분류한 결과 기존의 분류기법을 적용한 모델보다 5% 이상의 정확도가 향상되었다.
Harris corner detector is commonly used to detect feature points for recognizing 2-D or 3-D objects. However, the feature points calculated from both of query and target objects need to be same positions to guarantee accurate recognitions. In order to check the positions of calculated feature points, we generate a Huffman tree which is based on adjacent feature values as inputs. However, the structures of two Huffman trees will be same as long as both of a query and targets have same feature values no matter how different their positions are. In this paper, we sort feature values and calculate the Euclidean distances of coordinates between two adjacent feature values. The Huffman Tree is generated with these Euclidean distances. As a result, the information of point locations can be included in the generated Huffman tree. This is the main strategy for accurate recognitions. We call this system as the HRM(Hybrid Retrieval Machine). This system works very well even when artificial random noises are added to original data. HRM can be used to recognize biological data such as proteins, and it will curtail the costs which are required to biological experiments.
This paper presents a novel method for image classification based on a hybrid genetic algorithm (GA) and support vector machine (SVM) approach which can significantly improve the classification performance for content-based image retrieval (CBIR). Though SVM has been widely applied to CBIR, it has some problems such as the kernel parameters setting and feature subset selection of SVM which impact the classification accuracy in the learning process. This study aims at simultaneously optimizing the parameters of SVM and feature subset without degrading the classification accuracy of SVM using GA for CBIR. Using the hybrid GA and SVM model, we can classify more images in the database effectively. Experiments were carried out on a large-size database of images and experiment results show that the classification accuracy of conventional SVM may be improved significantly by using the proposed model. We also found that the proposed model outperformed all the other models such as neural network and typical SVM models.
This paper discusses a skeleton feature extraction method for ubiquitous robot system. The skeleton features are used to analyze human motion and pose estimation. In different conventional feature extraction environment, the ubiquitous robot system requires more robust feature extraction method because it has internal vibration and low image quality. The new hybrid silhouette extraction method and adaptive skeleton model are proposed to overcome this constrained environment. The skin color is used to extract more sophisticated feature points. Finally, the experimental results show the superiority of the proposed method.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권12호
/
pp.5685-5700
/
2018
Cyber intelligence, surveillance, and reconnaissance (ISR) has become more important than traditional military ISR. An agent used in cyber ISR resides in an enemy's networks and continually collects valuable information. Thus, this agent should be able to determine what is, and is not, useful in a short amount of time. Moreover, the agent should maintain a classification rate that is high enough to select useful data from the enemy's network. Traditional feature selection algorithms cannot comply with these requirements. Consequently, in this paper, we propose an effective hybrid feature selection method derived from the filter and wrapper methods. We illustrate the design of the proposed model and the experimental results of the performance comparison between the proposed model and the existing model.
Wiharto, Wiharto;Suryani, Esti;Setyawan, Sigit;Putra, Bintang PE
Journal of information and communication convergence engineering
/
제20권1호
/
pp.31-40
/
2022
Coronary heart disease (CHD) is a comorbidity of COVID-19; therefore, routine early diagnosis is crucial. A large number of examination attributes in the context of diagnosing CHD is a distinct obstacle during the pandemic when the number of health service users is significant. The development of a precise machine learning model for diagnosis with a minimum number of examination attributes can allow examinations and healthcare actions to be undertaken quickly. This study proposes a CHD diagnosis model based on feature selection, data balancing, and ensemble-based classification methods. In the feature selection stage, a hybrid SVM-GA combined with fast correlation-based filter (FCBF) is used. The proposed system achieved an accuracy of 94.60% and area under the curve (AUC) of 97.5% when tested on the z-Alizadeh Sani dataset and used only 8 of 54 inspection attributes. In terms of performance, the proposed model can be placed in the very good category.
본 연구에서는 효율적인 온 라인 문서 자동 분류를 위해 매우 중요한 분류 작업의 전처리 단계인 특징선택을 위한 새로운 방법이 제안된다. 대부분의 기존 특징선택 방법 연구에서는 특징 집합의 모집단이 단일 모집단으로써 한 모집단이 가지는 정보만으로 분류에 적합한 특징들을 선택하여 특징 집합을 구성하였다. 본 연구에서는 단일 모집단에 한하여 수행되는 특징선택 뿐 만 아니라, 다중 모집단을 가지는 혼합 특징 집합에 대해서 특징선택을 함으로써 다양한 정보를 바탕으로 한 특징 집합을 구성하였다. 혼합 특징 집합은 두 종류의 특징 집합으로 구성된다. 즉 각각 문서로부터 추출한 단어로 구성된 원본 특징 집합과 원본 특징 집합으로부터 LSA를 이용하여 새로 생성한 변형 특징 집합이다. 혼합 특징 집합으로부터 필터 방법과 래퍼 방법을 이용한 하이브리드 방식의 특징 선택을 통해 최적의 특징 집합을 찾고, 이를 이용하여 문서 분류 실험을 수행하였다. 다양한 모집단의 특징들의 정보를 모두 고려함으로써 보다 향상된 분류 성능을 보일 것이라고 기대하였고, 인터넷 뉴스 기사를 대상으로 분류 실험한 결과 90% 이상의 향상된 분류성능을 확인하였다. 특히, 재현율과 정밀도 모두 90%이상의 성능을 보였으며, 둘 사이의 편차가 낮은 것을 확인하였다.
Journal of information and communication convergence engineering
/
제3권4호
/
pp.209-212
/
2005
This study proposes hybrid case-based reasoning and genetic algorithms model for customer classification. In this study, vertical and horizontal dimensions of the research data are reduced through integrated feature and instance selection process using genetic algorithms. We applied the proposed model to customer classification model which utilizes customers' demographic characteristics as inputs to predict their buying behavior for the specific product. Experimental results show that the proposed model may improve the classification accuracy and outperform various optimization models of typical CBR system.
Recently technological advancements have allowed visible, infrared and thermal imaging systems to be readily available for security and access control. Increasing applications of facial recognition for security and access control leads to emerging spoofing methodologies. To overcome these challenges of occlusion, replay attack and disguise, researches have proposed using multiple imaging modalities. Using infrared and thermal modalities alongside visible imaging helps to overcome the shortcomings of visible imaging. In this paper we review and propose hybrid feature extraction methods to combine data from multiple imaging systems simultaneously.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.