• 제목/요약/키워드: Hybrid Feature

검색결과 315건 처리시간 0.031초

융합형 필터를 이용한 깊이 영상 기반 특징점 검출 기법 (Depth Image Based Feature Detection Method Using Hybrid Filter)

  • 전용태;이현;최재성
    • 대한임베디드공학회논문지
    • /
    • 제12권6호
    • /
    • pp.395-403
    • /
    • 2017
  • Image processing for object detection and identification has been studied for supply chain management application with various approaches. Among them, feature pointed detection algorithm is used to track an object or to recognize a position in automated supply chain systems and a depth image based feature point detection is recently highlighted in the application. The result of feature point detection is easily influenced by image noise. Also, the depth image has noise itself and it also affects to the accuracy of the detection results. In order to solve these problems, we propose a novel hybrid filtering mechanism for depth image based feature point detection, it shows better performance compared with conventional hybrid filtering mechanism.

악성 URL 탐지를 위한 URL Lexical Feature 기반의 DL-ML Fusion Hybrid 모델 (DL-ML Fusion Hybrid Model for Malicious Web Site URL Detection Based on URL Lexical Features)

  • 김대엽
    • 정보보호학회논문지
    • /
    • 제33권6호
    • /
    • pp.881-891
    • /
    • 2023
  • 최근에는 인공지능을 활용하여 악성 URL을 탐지하는 다양한 연구가 진행되고 있으며, 대부분의 연구 결과에서 높은 탐지 성능을 보였다. 그러나 고전 머신러닝을 활용하는 경우 feature를 분석하고 선별해야 하는 추가 비용이 발생하며, 데이터 분석가의 역량에 따라 탐지 성능이 결정되는 이슈가 있다. 본 논문에서는 이러한 이슈를 해결하기 위해 URL lexical feature를 자동으로 추출하는 딥러닝 모델의 일부가 고전 머신러닝 모델에 결합된 형태인 DL-ML Fusion Hybrid 모델을 제안한다. 제안한 모델로 직접 수집한 총 6만 개의 악성과 정상 URL을 학습한 결과 탐지 성능이 최대 23.98%p 향상되었을 뿐만 아니라, 자동화된 feature engineering을 통해 효율적인 기계학습이 가능하였다.

Simultaneous optimization method of feature transformation and weighting for artificial neural networks using genetic algorithm : Application to Korean stock market

  • Kim, Kyoung-jae;Ingoo Han
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 1999년도 추계학술대회-지능형 정보기술과 미래조직 Information Technology and Future Organization
    • /
    • pp.323-335
    • /
    • 1999
  • In this paper, we propose a new hybrid model of artificial neural networks(ANNs) and genetic algorithm (GA) to optimal feature transformation and feature weighting. Previous research proposed several variants of hybrid ANNs and GA models including feature weighting, feature subset selection and network structure optimization. Among the vast majority of these studies, however, ANNs did not learn the patterns of data well, because they employed GA for simple use. In this study, we incorporate GA in a simultaneous manner to improve the learning and generalization ability of ANNs. In this study, GA plays role to optimize feature weighting and feature transformation simultaneously. Globally optimized feature weighting overcome the well-known limitations of gradient descent algorithm and globally optimized feature transformation also reduce the dimensionality of the feature space and eliminate irrelevant factors in modeling ANNs. By this procedure, we can improve the performance and enhance the generalisability of ANNs.

  • PDF

새로운 하이브리드 스테레오 정합기법에 의한 3차원 선소추출 (3D Line Segment Detection using a New Hybrid Stereo Matching Technique)

  • 이동훈;우동민;정영기
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권4호
    • /
    • pp.277-285
    • /
    • 2004
  • We present a new hybrid stereo matching technique in terms of the co-operation of area-based stereo and feature-based stereo. The core of our technique is that feature matching is carried out by the reference of the disparity evaluated by area-based stereo. Since the reference of the disparity can significantly reduce the number of feature matching combinations, feature matching error can be drastically minimized. One requirement of the disparity to be referenced is that it should be reliable to be used in feature matching. To measure the reliability of the disparity, in this paper, we employ the self-consistency of the disunity Our suggested technique is applied to the detection of 3D line segments by 2D line matching using our hybrid stereo matching, which can be efficiently utilized in the generation of the rooftop model from urban imagery. We carry out the experiments on our hybrid stereo matching scheme. We generate synthetic images by photo-realistic simulation on Avenches data set of Ascona aerial images. Experimental results indicate that the extracted 3D line segments have an average error of 0.5m and verify our proposed scheme. In order to apply our method to the generation of 3D model in urban imagery, we carry out Preliminary experiments for rooftop generation. Since occlusions are occurred around the outlines of buildings, we experimentally suggested multi-image hybrid stereo system, based on the fusion of 3D line segments. In terms of the simple domain-specific 3D grouping scheme, we notice that an accurate 3D rooftop model can be generated. In this context, we expect that an extended 3D grouping scheme using our hybrid technique can be efficiently applied to the construction of 3D models with more general types of building rooftops.

특징 선택을 위한 혼합형 유전 알고리즘과 분류 성능 비교 (Hybrid Genetic Algorithms for Feature Selection and Classification Performance Comparisons)

  • 오일석;이진선;문병로
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권8호
    • /
    • pp.1113-1120
    • /
    • 2004
  • 이 논문은 특징 선택을 위한 새로운 혼합형 유전 알고리즘을 제안한다. 탐색을 미세 조정하기 위한 지역 연산을 고안하였고, 이들 연산을 유전 알고리즘에 삽입하였다. 연산의 미세 조정 강도를 조절할 수 있는 매개 변수를 설정하였으며, 이 변수에 따른 효과를 측정하였다. 다양한 표준 데이타 집합에 대해 실험한 결과, 제안한 혼합형 유전 알고리즘이 단순 유전 알고리즘과 순차 탐색 알고리즘에 비해 우수함을 확인하였다.

Hybrid-Feature Extraction for the Facial Emotion Recognition

  • Byun, Kwang-Sub;Park, Chang-Hyun;Sim, Kwee-Bo;Jeong, In-Cheol;Ham, Ho-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1281-1285
    • /
    • 2004
  • There are numerous emotions in the human world. Human expresses and recognizes their emotion using various channels. The example is an eye, nose and mouse. Particularly, in the emotion recognition from facial expression they can perform the very flexible and robust emotion recognition because of utilization of various channels. Hybrid-feature extraction algorithm is based on this human process. It uses the geometrical feature extraction and the color distributed histogram. And then, through the independently parallel learning of the neural-network, input emotion is classified. Also, for the natural classification of the emotion, advancing two-dimensional emotion space is introduced and used in this paper. Advancing twodimensional emotion space performs a flexible and smooth classification of emotion.

  • PDF

적층과 절삭을 복합적으로 수행하는 새로운 개념의 판재 적층식 쾌속 시작 시스템의 개발(II) - 공정계획 시스템 - (Development of New Rapid Prototyping System Performing both Deposition and Machining (II))

  • 허정훈;이건우
    • 대한기계학회논문집A
    • /
    • 제24권9호
    • /
    • pp.2235-2245
    • /
    • 2000
  • The necessity of using rapid prototyping(RP) for short-run manufacturing is continuously driving a development of a cost-effective technique that will produce completely-finished quality parts in a very short time. To meet these demands, the improvements in production speed, accuracy, materials, aid cost are crucial. Thus, a new hybrid-RP system performing both deposition and machining in a station is proposed. For the new hybrid RP process to maintain the same degree of process automation as in currently available processes like SLA or FDNI, a sophisticated process planning system is developed. In the process planner, CAD models(STEP AP203) are partitioned into 3D manufacturable volumes called 'Ueposition feature segment"(DFS) after machining features called "machining feature segmenf'(MFS) are extracted from the initial CAD model. Once MFS and DFS are identified, the process planner arranges them into a chain of processes and automatically generates machining information for each DFS and MFS. The goal of this paper is to present a framework for a process planning system for hybrid RP processes and to outline the geometric algorithms involved in developing such an environment.

조명 변이에 강인한 하이브리드 얼굴 인식 방법 (A Robust Hybrid Method for Face Recognition Under Illumination Variation)

  • 최상일
    • 전자공학회논문지
    • /
    • 제52권10호
    • /
    • pp.129-136
    • /
    • 2015
  • 본 논문에서는 조명 변이에 강인하게 동작 할 수 있는 하이브리드 얼굴 인식 방법을 제안한다. 이를 위해, 서로 다른 특성을 가진 조명 불변 특징 추출 방법으로부터 판별력 있는 특징들을 추출한다. 개별 방법들의 장점들을 효과적으로 활용하기 위해, 판별 거리 척도를 이용하여 각 특징들의 분별력을 측정하여 분별력이 높은 특징들로만 복합 특징을 구성하여 얼굴 인식에 사용한다. Multi-PIE, Yale B, AR, yale database들에 대한 실험 결과, 제안한 방법은 모든 database에 대해 개별 조명 불변 특징 방법들보다 우수한 인식 성능을 보여 주었다.

Hybrid Feature Selection과 Data Balancing을 통한 효율적인 네트워크 침입 탐지 모델 (Improved Network Intrusion Detection Model through Hybrid Feature Selection and Data Balancing)

  • 민병준;유지훈;신동규;신동일
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권2호
    • /
    • pp.65-72
    • /
    • 2021
  • 최근 네트워크 환경에 대한 공격이 급속도로 고도화 및 지능화 되고 있기에, 기존의 시그니처 기반 침입탐지 시스템은 한계점이 명확해지고 있다. 이러한 문제를 해결하기 위해서 기계학습 기반의 침입 탐지 시스템에 대한 연구가 활발히 진행되고 있다. 하지만 기계학습을 침입 탐지에 이용하기 위해서는 두 가지 문제에 직면한다. 첫 번째는 실시간 탐지를 위한 학습과 연관된 중요 특징들을 선별하는 문제이며, 두 번째는 학습에 사용되는 데이터의 불균형 문제로, 기계학습 알고리즘들은 데이터에 의존적이기에 이러한 문제는 치명적이다. 본 논문에서는 위 제시된 문제들을 해결하기 위해서 Hybrid Feature Selection과 Data Balancing을 통한 심층 신경망 기반의 네트워크 침입 탐지 모델인 HFS-DNN을 제안한다. NSL-KDD 데이터 셋을 통해 학습을 진행하였으며, 기존 분류 모델들과 성능 비교를 수행한다. 본 연구에서 제안된 Hybrid Feature Selection 알고리즘이 학습 모델의 성능을 왜곡 시키지 않는 것을 확인하였으며, 불균형을 해소한 학습 모델들간 실험에서 본 논문에서 제안한 학습 모델이 가장 좋은 성능을 보였다.

혼합형 특징점 추출을 이용한 얼굴 표정의 감성 인식 (Emotion Recognition of Facial Expression using the Hybrid Feature Extraction)

  • 변광섭;박창현;심귀보
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.132-134
    • /
    • 2004
  • Emotion recognition between human and human is done compositely using various features that are face, voice, gesture and etc. Among them, it is a face that emotion expression is revealed the most definitely. Human expresses and recognizes a emotion using complex and various features of the face. This paper proposes hybrid feature extraction for emotions recognition from facial expression. Hybrid feature extraction imitates emotion recognition system of human by combination of geometrical feature based extraction and color distributed histogram. That is, it can robustly perform emotion recognition by extracting many features of facial expression.

  • PDF