• Title/Summary/Keyword: Hybrid Feature

Search Result 315, Processing Time 0.011 seconds

Depth Image Based Feature Detection Method Using Hybrid Filter (융합형 필터를 이용한 깊이 영상 기반 특징점 검출 기법)

  • Jeon, Yong-Tae;Lee, Hyun;Choi, Jae-Sung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.6
    • /
    • pp.395-403
    • /
    • 2017
  • Image processing for object detection and identification has been studied for supply chain management application with various approaches. Among them, feature pointed detection algorithm is used to track an object or to recognize a position in automated supply chain systems and a depth image based feature point detection is recently highlighted in the application. The result of feature point detection is easily influenced by image noise. Also, the depth image has noise itself and it also affects to the accuracy of the detection results. In order to solve these problems, we propose a novel hybrid filtering mechanism for depth image based feature point detection, it shows better performance compared with conventional hybrid filtering mechanism.

DL-ML Fusion Hybrid Model for Malicious Web Site URL Detection Based on URL Lexical Features (악성 URL 탐지를 위한 URL Lexical Feature 기반의 DL-ML Fusion Hybrid 모델)

  • Dae-yeob Kim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.881-891
    • /
    • 2023
  • Recently, various studies on malicious URL detection using artificial intelligence have been conducted, and most of the research have shown great detection performance. However, not only does classical machine learning require a process of analyzing features, but the detection performance of a trained model also depends on the data analyst's ability. In this paper, we propose a DL-ML Fusion Hybrid Model for malicious web site URL detection based on URL lexical features. the propose model combines the automatic feature extraction layer of deep learning and classical machine learning to improve the feature engineering issue. 60,000 malicious and normal URLs were collected for the experiment and the results showed 23.98%p performance improvement in maximum. In addition, it was possible to train a model in an efficient way with the automation of feature engineering.

Simultaneous optimization method of feature transformation and weighting for artificial neural networks using genetic algorithm : Application to Korean stock market

  • Kim, Kyoung-jae;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.10a
    • /
    • pp.323-335
    • /
    • 1999
  • In this paper, we propose a new hybrid model of artificial neural networks(ANNs) and genetic algorithm (GA) to optimal feature transformation and feature weighting. Previous research proposed several variants of hybrid ANNs and GA models including feature weighting, feature subset selection and network structure optimization. Among the vast majority of these studies, however, ANNs did not learn the patterns of data well, because they employed GA for simple use. In this study, we incorporate GA in a simultaneous manner to improve the learning and generalization ability of ANNs. In this study, GA plays role to optimize feature weighting and feature transformation simultaneously. Globally optimized feature weighting overcome the well-known limitations of gradient descent algorithm and globally optimized feature transformation also reduce the dimensionality of the feature space and eliminate irrelevant factors in modeling ANNs. By this procedure, we can improve the performance and enhance the generalisability of ANNs.

  • PDF

3D Line Segment Detection using a New Hybrid Stereo Matching Technique (새로운 하이브리드 스테레오 정합기법에 의한 3차원 선소추출)

  • 이동훈;우동민;정영기
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.4
    • /
    • pp.277-285
    • /
    • 2004
  • We present a new hybrid stereo matching technique in terms of the co-operation of area-based stereo and feature-based stereo. The core of our technique is that feature matching is carried out by the reference of the disparity evaluated by area-based stereo. Since the reference of the disparity can significantly reduce the number of feature matching combinations, feature matching error can be drastically minimized. One requirement of the disparity to be referenced is that it should be reliable to be used in feature matching. To measure the reliability of the disparity, in this paper, we employ the self-consistency of the disunity Our suggested technique is applied to the detection of 3D line segments by 2D line matching using our hybrid stereo matching, which can be efficiently utilized in the generation of the rooftop model from urban imagery. We carry out the experiments on our hybrid stereo matching scheme. We generate synthetic images by photo-realistic simulation on Avenches data set of Ascona aerial images. Experimental results indicate that the extracted 3D line segments have an average error of 0.5m and verify our proposed scheme. In order to apply our method to the generation of 3D model in urban imagery, we carry out Preliminary experiments for rooftop generation. Since occlusions are occurred around the outlines of buildings, we experimentally suggested multi-image hybrid stereo system, based on the fusion of 3D line segments. In terms of the simple domain-specific 3D grouping scheme, we notice that an accurate 3D rooftop model can be generated. In this context, we expect that an extended 3D grouping scheme using our hybrid technique can be efficiently applied to the construction of 3D models with more general types of building rooftops.

Hybrid Genetic Algorithms for Feature Selection and Classification Performance Comparisons (특징 선택을 위한 혼합형 유전 알고리즘과 분류 성능 비교)

  • 오일석;이진선;문병로
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.8
    • /
    • pp.1113-1120
    • /
    • 2004
  • This paper proposes a novel hybrid genetic algorithm for the feature selection. Local search operations are devised and embedded in hybrid GAs to fine-tune the search. The operations are parameterized in terms of the fine-tuning power, and their effectiveness and timing requirement are analyzed and compared. Experimentations performed with various standard datasets revealed that the proposed hybrid GA is superior to a simple GA and sequential search algorithms.

Hybrid-Feature Extraction for the Facial Emotion Recognition

  • Byun, Kwang-Sub;Park, Chang-Hyun;Sim, Kwee-Bo;Jeong, In-Cheol;Ham, Ho-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1281-1285
    • /
    • 2004
  • There are numerous emotions in the human world. Human expresses and recognizes their emotion using various channels. The example is an eye, nose and mouse. Particularly, in the emotion recognition from facial expression they can perform the very flexible and robust emotion recognition because of utilization of various channels. Hybrid-feature extraction algorithm is based on this human process. It uses the geometrical feature extraction and the color distributed histogram. And then, through the independently parallel learning of the neural-network, input emotion is classified. Also, for the natural classification of the emotion, advancing two-dimensional emotion space is introduced and used in this paper. Advancing twodimensional emotion space performs a flexible and smooth classification of emotion.

  • PDF

Development of New Rapid Prototyping System Performing both Deposition and Machining (II) (적층과 절삭을 복합적으로 수행하는 새로운 개념의 판재 적층식 쾌속 시작 시스템의 개발(II) - 공정계획 시스템 -)

  • Heo, Jeong-Hun;Lee, Geon-U
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2235-2245
    • /
    • 2000
  • The necessity of using rapid prototyping(RP) for short-run manufacturing is continuously driving a development of a cost-effective technique that will produce completely-finished quality parts in a very short time. To meet these demands, the improvements in production speed, accuracy, materials, aid cost are crucial. Thus, a new hybrid-RP system performing both deposition and machining in a station is proposed. For the new hybrid RP process to maintain the same degree of process automation as in currently available processes like SLA or FDNI, a sophisticated process planning system is developed. In the process planner, CAD models(STEP AP203) are partitioned into 3D manufacturable volumes called 'Ueposition feature segment"(DFS) after machining features called "machining feature segmenf'(MFS) are extracted from the initial CAD model. Once MFS and DFS are identified, the process planner arranges them into a chain of processes and automatically generates machining information for each DFS and MFS. The goal of this paper is to present a framework for a process planning system for hybrid RP processes and to outline the geometric algorithms involved in developing such an environment.

A Robust Hybrid Method for Face Recognition Under Illumination Variation (조명 변이에 강인한 하이브리드 얼굴 인식 방법)

  • Choi, Sang-Il
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.10
    • /
    • pp.129-136
    • /
    • 2015
  • We propose a hybrid face recognition to deal with illumination variation. For this, we extract discriminant features by using the different illumination invariant feature extraction methods. In order to utilize both advantages of each method, we evaluate the discriminant power of each feature by using the discriminant distance and then construct a composite feature with only the features that contain a large amount of discriminative information. The experimental results for the Multi-PIE, Yale B, AR and yale databases show that the proposed method outperforms an individual illumination invariant feature extraction method for all the databases.

Improved Network Intrusion Detection Model through Hybrid Feature Selection and Data Balancing (Hybrid Feature Selection과 Data Balancing을 통한 효율적인 네트워크 침입 탐지 모델)

  • Min, Byeongjun;Ryu, Jihun;Shin, Dongkyoo;Shin, Dongil
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.2
    • /
    • pp.65-72
    • /
    • 2021
  • Recently, attacks on the network environment have been rapidly escalating and intelligent. Thus, the signature-based network intrusion detection system is becoming clear about its limitations. To solve these problems, research on machine learning-based intrusion detection systems is being conducted in many ways, but two problems are encountered to use machine learning for intrusion detection. The first is to find important features associated with learning for real-time detection, and the second is the imbalance of data used in learning. This problem is fatal because the performance of machine learning algorithms is data-dependent. In this paper, we propose the HSF-DNN, a network intrusion detection model based on a deep neural network to solve the problems presented above. The proposed HFS-DNN was learned through the NSL-KDD data set and performs performance comparisons with existing classification models. Experiments have confirmed that the proposed Hybrid Feature Selection algorithm does not degrade performance, and in an experiment between learning models that solved the imbalance problem, the model proposed in this paper showed the best performance.

Emotion Recognition of Facial Expression using the Hybrid Feature Extraction (혼합형 특징점 추출을 이용한 얼굴 표정의 감성 인식)

  • Byun, Kwang-Sub;Park, Chang-Hyun;Sim, Kwee-Bo
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.132-134
    • /
    • 2004
  • Emotion recognition between human and human is done compositely using various features that are face, voice, gesture and etc. Among them, it is a face that emotion expression is revealed the most definitely. Human expresses and recognizes a emotion using complex and various features of the face. This paper proposes hybrid feature extraction for emotions recognition from facial expression. Hybrid feature extraction imitates emotion recognition system of human by combination of geometrical feature based extraction and color distributed histogram. That is, it can robustly perform emotion recognition by extracting many features of facial expression.

  • PDF