• Title/Summary/Keyword: Hybrid Clustering

Search Result 178, Processing Time 0.026 seconds

An Optimal Clustering using Hybrid Self Organizing Map

  • Jun, Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.10-14
    • /
    • 2006
  • Many clustering methods have been studied. For the most part of these methods may be needed to determine the number of clusters. But, there are few methods for determining the number of population clusters objectively. It is difficult to determine the cluster size. In general, the number of clusters is decided by subjectively prior knowledge. Because the results of clustering depend on the number of clusters, it must be determined seriously. In this paper, we propose an efficient method for determining the number of clusters using hybrid' self organizing map and new criterion for evaluating the clustering result. In the experiment, we verify our model to compare other clustering methods using the data sets from UCI machine learning repository.

Interest Based Clustering Mechanism for Hybrid P2P (하이브리드 P2P를 위한 관심분야 기반 클러스터링)

  • Lee, Lee-Sub
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.1
    • /
    • pp.69-75
    • /
    • 2006
  • P2P services occupy more then 50% of the internet traffics. A huge number of query packets are generated since pure P2P based models rely on message flooding for their query mechanisms. In this study, the numbers of query messages generated in the pure P2P and hybrid P2P model are analyzed. The results show that hybrid P2P models also could suffer from message flooding. To reduce the message flooding, this study proposes an interest based clustering mechanism for hybrid P2P services. By applying this clustering algorithm, it could reduce 99.998% of the message flooding. The proposed algorithm also reduces the cost of the joining operations by storing previous supernodes.

  • PDF

The Study on Improvement of Cohesion of Clustering in Incremental Concept Learning (점진적 개념학습의 클러스터 응집도 개선)

  • Baek, Hey-Jung;Park, Young-Tack
    • The KIPS Transactions:PartB
    • /
    • v.10B no.3
    • /
    • pp.297-304
    • /
    • 2003
  • Nowdays, with the explosive growth of the web information, web users Increase requests of systems which collect and analyze web pages that are relevant. The systems which were develop to solve the request were used clustering methods to improve the duality of information. Clustering is defining inter relationship of unordered data and grouping data systematically. The systems using clustering provide the grouped information to the users. So, they understand the information efficiently. We proposed a hybrid clustering method to cluster a large quantity of data efficiently. By that method, We generate initial clusters using COBWEB Algorithm and refine them using Ezioni Algorithm. This paper adds two ideas in prior hybrid clustering method to increment accuracy and efficiency of clusters. Firstly, we propose the clustering method considering weight of attributes of data. Second, we redefine evaluation functions which generate initial clusters to increase efficiency in clustering. Clustering method proposed in this paper processes a large quantity of data and diminish of dependancy on sequence of input of data. So the clusters are useful to make user profiles in high quality. Ultimately, we will show that the proposed clustering method outperforms the pervious clustering method in the aspect of precision and execution speed.

Areal Image Clustering using Hybrid Kohonen Network (Hybrid Kohonen 네트워크에 의한 항공영상 클러스터링)

  • Lee, Kyunghee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.07a
    • /
    • pp.250-251
    • /
    • 2015
  • 본 논문에서는 자기 조직화 기능을 갖는 Kohonen의 SOM(Self organization map) 신경회로망과 주어지는 데이터에 따라 초기의 클러스터 개수를 설정하여 처리하는 수정된 K-Means 알고리즘을 결합한 Hybrid Kohonen Network 를 제안한다. 또한, 실제의 항공영상에 적용하여 고전적인 K-Means 알고리즘 및 고전적인 SOM 알고리즘보다 우수함을 보인다.

  • PDF

Optimization of the fuzzy model using the clustering and hybrid algorithms (클러스터링 및 하이브리드 알고리즘을 이용한 퍼지모델의 최적화)

  • Park, Byoung-Jun;Yoon, Ki-Chan;Oh, Sung-Kwun;Jang, Seong-Whan
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2908-2910
    • /
    • 1999
  • In this paper, a fuzzy model is identified and optimized using the hybrid algorithm and HCM clustering method. Here, the hybrid algorithm is carried out as the structure combined with both a genetic algorithm and the improved complex method. The one is utilized for determining the initial parameters of membership function, the other for obtaining the fine parameters of membership function. HCM clustering algorithm is used to determine the confined region of initial parameters and also to avoid overflow phenomenon during auto-tuning of hybrid algorithm. And the standard least square method is used for the identification of optimum consequence parameters of fuzzy model. Two numerical examples are shown to evaluate the performance of the proposed model.

  • PDF

Data Clustering Using Hybrid Neural Network

  • Guan, Donghai;Gavrilov, Andrey;Yuan, Weiwei;Lee, Sung-Young;Lee, Young-Koo
    • Annual Conference of KIPS
    • /
    • 2007.05a
    • /
    • pp.457-458
    • /
    • 2007
  • Clustering plays an indispensable role for data analysis. Many clustering algorithms have been developed. However, most of them suffer poor performance of learning. To archive good clustering performance, we develop a hybrid neural network model. It is the combination of Multi-Layer Perceptron (MLP) and Adaptive Resonance Theory 2 (ART2). It inherits two distinct advantages of stability and plasticity from ART2. Meanwhile, by combining the merits of MLP, it improves the performance for clustering. Experiment results show that our model can be used for clustering with promising performance.

A Conditional Clustering Scheme for Hybrid NOMA in Millimeter Wave Communication System

  • Nguyen, Thanh Ngoc;Jeon, Taehyun
    • International journal of advanced smart convergence
    • /
    • v.8 no.4
    • /
    • pp.34-39
    • /
    • 2019
  • Millimeter-wave (mmWave) and Non-orthogonal multiple access (NOMA) are expected to be the major techniques that lead to the next generation wireless communication. NOMA provides a high spectrum efficiency by sharing of spatial resources among users in the same frequency band. Meanwhile, millimeter-wave gives a huge underutilized bandwidth at extremely high frequency band (EHF) which covers 30GHz to 300GHz. These techniques have been proven in several recent literatures to achieve high data rates. The combination of NOMA and millimeter-wave techniques further improves average sum capacities, as well as reduces the interference compared to conventional wireless communication systems. In this paper, we focus on hybrid NOMA system working in millimeter-wave frequency. We propose a clustering algorithm used for a hybrid NOMA scheme to optimize the usage of wireless resources. The proposed clustering algorithm adds several conditions in grouping users and defining clusters to increase the probability of the successful superposition decoding process. The performance of the proposed clustering algorithm is investigated in hybrid NOMA system and compared with the conventional orthogonal multiple access (OMA) scheme.

Hybrid Simulated Annealing for Data Clustering (데이터 클러스터링을 위한 혼합 시뮬레이티드 어닐링)

  • Kim, Sung-Soo;Baek, Jun-Young;Kang, Beom-Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.2
    • /
    • pp.92-98
    • /
    • 2017
  • Data clustering determines a group of patterns using similarity measure in a dataset and is one of the most important and difficult technique in data mining. Clustering can be formally considered as a particular kind of NP-hard grouping problem. K-means algorithm which is popular and efficient, is sensitive for initialization and has the possibility to be stuck in local optimum because of hill climbing clustering method. This method is also not computationally feasible in practice, especially for large datasets and large number of clusters. Therefore, we need a robust and efficient clustering algorithm to find the global optimum (not local optimum) especially when much data is collected from many IoT (Internet of Things) devices in these days. The objective of this paper is to propose new Hybrid Simulated Annealing (HSA) which is combined simulated annealing with K-means for non-hierarchical clustering of big data. Simulated annealing (SA) is useful for diversified search in large search space and K-means is useful for converged search in predetermined search space. Our proposed method can balance the intensification and diversification to find the global optimal solution in big data clustering. The performance of HSA is validated using Iris, Wine, Glass, and Vowel UCI machine learning repository datasets comparing to previous studies by experiment and analysis. Our proposed KSAK (K-means+SA+K-means) and SAK (SA+K-means) are better than KSA(K-means+SA), SA, and K-means in our simulations. Our method has significantly improved accuracy and efficiency to find the global optimal data clustering solution for complex, real time, and costly data mining process.

Clustering of Web Document Exploiting with the Union of Term frequency and Co-link in Hypertext (단어빈도와 동시링크의 결합을 통한 웹 문서 클러스터링 성능 향상에 관한 연구)

  • Lee, Kyo-Woon;Lee, Won-hee;Park, Heum;Kim, Young-Gi;Kwon, Hyuk-Chul
    • Journal of Korean Library and Information Science Society
    • /
    • v.34 no.3
    • /
    • pp.211-229
    • /
    • 2003
  • In this paper, we have focused that the number of word in the web document affects definite clustering performance. Our experimental results have clearly shown the relationship between the amounts of word and its impact on clustering performance. We also have presented an algorithm that can be supplemented of the contrast portion through co-links frequency of web documents. Testing bench of this research is 1,449 web documents included on 'Natural science' category among the Naver Directory. We have clustered these objects by term-based clustering, link-based clustering, and hybrid clustering method, and compared the output results with originally allocated category of Naver directory.

  • PDF

Mobility-Based Clustering Algorithm for Multimedia Broadcasting over IEEE 802.11p-LTE-enabled VANET

  • Syfullah, Mohammad;Lim, Joanne Mun-Yee;Siaw, Fei Lu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1213-1237
    • /
    • 2019
  • Vehicular Ad-hoc Network (VANET) facilities envision future Intelligent Transporting Systems (ITSs) by providing inter-vehicle communication for metrics such as road surveillance, traffic information, and road condition. In recent years, vehicle manufacturers, researchers and academicians have devoted significant attention to vehicular communication technology because of its highly dynamic connectivity and self-organized, decentralized networking characteristics. However, due to VANET's high mobility, dynamic network topology and low communication coverage, dissemination of large data packets (e.g. multimedia content) is challenging. Clustering enhances network performance by maintaining communication link stability, sharing network resources and efficiently using bandwidth among nodes. This paper proposes a mobility-based, multi-hop clustering algorithm, (MBCA) for multimedia content broadcasting over an IEEE 802.11p-LTE-enabled hybrid VANET architecture. The OMNeT++ network simulator and a SUMO traffic generator are used to simulate a network scenario. The simulation results indicate that the proposed clustering algorithm over a hybrid VANET architecture improves the overall network stability and performance, resulting in an overall 20% increased cluster head duration, 20% increased cluster member duration, lower cluster overhead, 15% improved data packet delivery ratio and lower network delay from the referenced schemes [46], [47] and [50] during multimedia content dissemination over VANET.