• Title/Summary/Keyword: Hybrid Camera

Search Result 123, Processing Time 0.024 seconds

Dynamic Slant Interface Crack Propagation Behavior under Initial Impact Loading (초기 혼합모드 동적 하중을 받는 경사계면균열의 동적 전파거동)

  • Lee, Eok-Seop;Park, Jae-Cheol;Yun, Hae-Ryong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.146-151
    • /
    • 2001
  • The effects of slant interface in the hybrid specimen on the dynamic crack propagation behavior have been investigated using dynamic photoelasticity. The dynamic photoelasticity with the aid of Cranz-Shardin type high speed camera system is utilized to record the dynamic stress field around the dynamically propagating inclined interface crack tip in the three point bending specimens. The dynamic load is applied by a hammer dropped from 0.08m high without initial velocity. The dynamic crack propagation velocities and dynamic stresses field around the interface crack tips are investigated. Theoretical dynamic isochromatic fringe loops are compared with the experimental reults. It is interesting to note that the crack propagating velocity becomes comparable to the Rayleigh wave speed of the soft material of a specimen when slant angle decreases.

  • PDF

A study on the manufacturing of metal/plastic multi-components using the DSI molding (DSI 성형을 이용한 금속/플라스틱 복합 부품 제조에 관한 연구)

  • Ha, Seok-Jae;Cha, Baeg-Soon;Ko, Young-Bae
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.71-77
    • /
    • 2020
  • Various manufacturing technologies, including over-molding and insert-injection molding, are used to produce hybrid plastics and metals. However, there are disadvantages to these technologies, as they require several steps in manufacturing and are limited to what can be reasonably achieved within the complexities of part geometry. This study aims to determine a practical approach for producing metal/plastic hybrid components by combining plastic injection molding and metal die casting to create a new hybrid metal/plastic molding process. The integrated metal/plastic hybrid injection molding process developed in this study uses the proven method of multi-component technology as a basis to combine plastic injection molding with metal die casting into one integrated process. In this study, the electrical conductivity and ampacity were verified to qualify the new process for the production of parts used in electronic devices. The electrical conductivity was measured, contacting both sides of the test sample with constant pressure, and the resistivity was measured using a micro ohmmeter. Also, the specific conductivity was subsequently calculated from the resistivity and contact surface of the conductor path. The ampacity defines the maximum amount of current a conductive path can carry before sustaining immediate or progressive deterioration. The manufactured hybrid multi-components were loaded with increasing currents, while the temperature was recorded with an infrared camera. To compare the measured infrared images, an electro-thermal simulation was conducted using commercial CAE software to predict the maximum temperature of the power loaded parts. Overall, during the injection molding process, it was demonstrated that multifunctional parts can be produced for electric and electronic applications.

Development of Real-Time Verification System by Features Extraction of Multimodal Biometrics Using Hybrid Method (조합기법을 이용한 다중생체신호의 특징추출에 의한 실시간 인증시스템 개발)

  • Cho, Yong-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.4
    • /
    • pp.263-268
    • /
    • 2006
  • This paper presents a real-time verification system by extracting a features of multimodal biometrics using hybrid method, which is combined the moment balance and the independent component analysis(ICA). The moment balance is applied to reduce the computation loads by extracting the validity signal due to exclude the needless backgrounds of multimodal biometrics. ICA is also applied to increase the verification performance by removing the overlapping signals due to extract the statistically independent basis of signals. Multimodal biometrics are used both the faces and the fingerprints which are acquired by Web camera and acquisition device, respectively. The proposed system has been applied to the fusion problems of 48 faces and 48 fingerprints(24 persons * 2 scenes) of 320*240 pixels, respectively. The experimental results show that the proposed system has a superior verification performances(speed, rate).

  • PDF

Object Recognition-based Global Localization for Mobile Robots (이동로봇의 물체인식 기반 전역적 자기위치 추정)

  • Park, Soon-Yyong;Park, Mignon;Park, Sung-Kee
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.1
    • /
    • pp.33-41
    • /
    • 2008
  • Based on object recognition technology, we present a new global localization method for robot navigation. For doing this, we model any indoor environment using the following visual cues with a stereo camera; view-based image features for object recognition and those 3D positions for object pose estimation. Also, we use the depth information at the horizontal centerline in image where optical axis passes through, which is similar to the data of the 2D laser range finder. Therefore, we can build a hybrid local node for a topological map that is composed of an indoor environment metric map and an object location map. Based on such modeling, we suggest a coarse-to-fine strategy for estimating the global localization of a mobile robot. The coarse pose is obtained by means of object recognition and SVD based least-squares fitting, and then its refined pose is estimated with a particle filtering algorithm. With real experiments, we show that the proposed method can be an effective vision- based global localization algorithm.

  • PDF

A Hybrid Method for Mobile Robot Probabilistic Localization Using a Single Camera

  • Kubik, Tomasz;Loukianov, Andrey A.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.36.5-36
    • /
    • 2001
  • Localization is one of the key problems in the navigation of autonomous mobile robots. The probabilistic Markov localization approaches offer a good mathematical framework to deal with the uncertainty of environment and sensor readings but their use for realtime applications is limited by their computational complexity. This paper aims to reduce the high computational cost associated with the probabilistic Markov localization algorithm. We propose a hybrid landmark-based localization method combining triangulation and probabilistic approaches, which can efficiently update position probability grid, while the probabilistic framework allows to make use of any available sensor data to refine robot´s belief about its current location. The simulation results show the effectiveness and robustness of the method.

  • PDF

A Study on Hybrid Filter Algorithm for Image Denoising (영상 잡음제거를 위한 하이브리드 필터 알고리즘에 관한 연구)

  • Yinyu, Gao;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.127-129
    • /
    • 2012
  • Due to the prevalence of digital camera, multi-media etc. the image is being used in everyday life. However, noise always damages the image and the image denoising technology is important part for improving the image visual quality. There are many existing methods to remove noise such as wiener filter, mean filter and VisuShrink etc. However, they perform not good enough for denoising. Hence, in this paper we proposed a hybrid filter algorithm which consists of wiener filter and modified wavelet based thresholding method using adaptive threshold and thresholding function. The proposed algorithm shows not only better low frequency and high frequency property, but also the outstanding noise suppression and edge preservation properties.

  • PDF

Visualization device of solid fuel combustion in hybrid rocket (하이브리드 로켓에서의 고체 연료 연소 가시화 장치)

  • Moon, Keun-Hwan;Cho, Jung-Tae;Kim, Soo-Jong;Lee, Jung-Pyo;Kim, Hak-Chul;Oh, Ji-Sung;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.206-209
    • /
    • 2010
  • The visualization device for hybrid rocket is fabricated to investigate the combustion phenomena. Visualization device were composed with ignition system, oxidizer supply system, control system and data acquisition system, combustion visualization system. GOX as oxidizer and HDPE, Paraffin-LDPE Blending, Paraffin sd were used. As results, combustion phenomena and fuel droplet entrainment were observed.

  • PDF

A Robust Depth Map Upsampling Against Camera Calibration Errors (카메라 보정 오류에 강건한 깊이맵 업샘플링 기술)

  • Kim, Jae-Kwang;Lee, Jae-Ho;Kim, Chang-Ick
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.8-17
    • /
    • 2011
  • Recently, fusion camera systems that consist of depth sensors and color cameras have been widely developed with the advent of a new type of sensor, time-of-flight (TOF) depth sensor. The physical limitation of depth sensors usually generates low resolution images compared to corresponding color images. Therefore, the pre-processing module, such as camera calibration, three dimensional warping, and hole filling, is necessary to generate the high resolution depth map that is placed in the image plane of the color image. However, the result of the pre-processing step is usually inaccurate due to errors from the camera calibration and the depth measurement. Therefore, in this paper, we present a depth map upsampling method robust these errors. First, the confidence of the measured depth value is estimated by the interrelation between the color image and the pre-upsampled depth map. Then, the detailed depth map can be generated by the modified kernel regression method which exclude depth values having low confidence. Our proposed algorithm guarantees the high quality result in the presence of the camera calibration errors. Experimental comparison with other data fusion techniques shows the superiority of our proposed method.

A Study of Globular Cluster Systems in the Coma, Fornax, and Virgo Clusters of Galaxies from HST ACS and WFC3/IR Imaging

  • Cho, Hyejeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.29.1-29.1
    • /
    • 2017
  • I present new near-infrared (NIR) photometry of globular cluster (GC) systems associated to a cD galaxy NGC 4874 in the core of the Coma cluster and 16 early-type galaxies in the Fornax and Virgo clusters of galaxies using the Infrared Channel of the Wide Field Camera 3 (WFC3/IR) on board the Hubble Space Telescope (HST). Combining these high-resolution NIR data with new HST Advanced Camera for Surveys (ACS) optical photometry for NGC 4874 and existing ACS GC catalogs from the ACS Fornax and Virgo Cluster Surveys, I have examined for the first time the GC systems in a statistically significant optical/NIR sample of galaxies spanning a wide range of luminosities and colors. A primary goal of this study is to explore empirically whether the distributions of purely optical and hybrid optical - NIR color indices for extragalactic GCs have different forms and whether the relations between these color indices are nonlinear, indicating that they behave differently with underlying metallicity. I find that some GC systems of large galaxies in our sample show color bimodalities that differ between the optical and optical - NIR colors, in the sense that they have disparate ratios of "blue" and "red" peak GCs, as well as differing ratios in their color dispersions. Consistent with these results, I find empirically that the dependence of hybrid optical-NIR color on purely optical color is nonlinear, with an inflection at intermediate metallicities. These findings underscore the importance of understanding the nature of galaxy-to-galaxy variations in the GC color distributions and color-color relations, as well as the exact forms of the color-metallicity transformations, in interpreting the observational data on GC color bimodality. Our ACS data for NGC 4874 shows that its GC system exhibits a very strong blue tilt, implying a very steep mass-metallicity scaling, and the centroid of this GC system is offset by $4{\pm}1kpc$ from the luminosity center of NGC 4874, in the direction of NGC 4872. Finally, I discuss the asymmetrical GC distribution around a dwarf elliptical galaxy in Coma that has a very high relative velocity with respect to the cluster mean at small clustercentric radius.

  • PDF

Monocular Vision Based Localization System using Hybrid Features from Ceiling Images for Robot Navigation in an Indoor Environment (실내 환경에서의 로봇 자율주행을 위한 천장영상으로부터의 이종 특징점을 이용한 단일비전 기반 자기 위치 추정 시스템)

  • Kang, Jung-Won;Bang, Seok-Won;Atkeson, Christopher G.;Hong, Young-Jin;Suh, Jin-Ho;Lee, Jung-Woo;Chung, Myung-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.3
    • /
    • pp.197-209
    • /
    • 2011
  • This paper presents a localization system using ceiling images in a large indoor environment. For a system with low cost and complexity, we propose a single camera based system that utilizes ceiling images acquired from a camera installed to point upwards. For reliable operation, we propose a method using hybrid features which include natural landmarks in a natural scene and artificial landmarks observable in an infrared ray domain. Compared with previous works utilizing only infrared based features, our method reduces the required number of artificial features as we exploit both natural and artificial features. In addition, compared with previous works using only natural scene, our method has an advantage in the convergence speed and robustness as an observation of an artificial feature provides a crucial clue for robot pose estimation. In an experiment with challenging situations in a real environment, our method was performed impressively in terms of the robustness and accuracy. To our knowledge, our method is the first ceiling vision based localization method using features from both visible and infrared rays domains. Our system can be easily utilized with a variety of service robot applications in a large indoor environment.