• Title/Summary/Keyword: Hwang-toh

Search Result 19, Processing Time 0.031 seconds

Optimum Mix Proportion and Mechanical Properties of Rain Garden Structure Concrete using Recycled Coarse Aggregate, Hwang-Toh, Blast Furnace Slag and Jute Fiber (순환굵은골재, 황토, 고로슬래그 미분말 및 마섬유를 사용한 레인가든 구조물 콘크리트의 최적배합설계 및 역학적 특성)

  • Kim, Dong-Hyun;Park, Chan Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.25-33
    • /
    • 2013
  • In this study, the optimum mix proportions of rain garden structure concrete were decided and the mechanical properties were evaluated. Experimental parameters were blast furnace slag, hwang-toh, recycled aggregates and natural jute fibers. The target compressive strength and chloride ion penetration were more than 24 MPa and less than 1000 coulombs, respectively. The response surface method was used for statistical optimization of experimental results. The optimal mixing ratios of the blast furnace slag, hwang-toh, recycled coarse aggregate and jute fiber volume fraction were determined 59.98 %, 8.74 %, 12.12 % and 0.2 %, respectively. The compressive strength, flexural strength and chloride ion penetration test results of optimum mix ratio showed that the 24.56 MPa, 3.88 MPa and 999.08 columbs, respectively.

A Study on the Application Review of Hwang-toh for Ground Grouting Based on Smart Construction (스마트건설기반에서의 지반그라우팅을 위한 황토의 적용성 검토)

  • Taese Lee;Donghyuk Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.5
    • /
    • pp.21-27
    • /
    • 2024
  • Limestone-based cement has been well utilized as a construction material throughout the world, but as civil and architectural development accelerates, limestone will gradually be depleted. The use of cement, the main material for civil engineering and construction, is rapidly increasing in modern times, and the depletion of high-quality limestone resources will be greater than expected in the future. Therefore, if existing resources can be used as construction materials to replace cement based on accumulated technology, the depleting limestone resources can be utilized for a longer period of time. In order to determine whether Hwang-toh, which forms about 10% of the surface layer of Korea's terrain, can be partially utilized as a construction material, this study aims to develop a Hwang-toh accelerator agent and prove whether it can be applied to the field through indoor tests.

Performance Evaluation of Natural Jute Fiber Reinforced Recycled Coarse Aggregate Concrete Using Response Surface Method (반응표면 분석법을 이용한 천연마섬유보강 순환굵은골재 콘크리트의 성능 평가)

  • Jeon, Ji Hong;Kim, Hwang Hee;Kim, Chun Soo;Yoo, Sung Yeol;Park, Chan Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.4
    • /
    • pp.21-28
    • /
    • 2014
  • In this study, evaluated ware the strength and durability of the vegetated water purification channel concrete to which recycled aggregates, hawang-toh and jute were applied. Box-Behnken method of response surface analysis in statistics was applied to the experimental design. Experimental variables are as follows, recycled coarse aggregates, hawang-toh, blast-furnace slag and jute fiber. In the experiment, conducted were the tests of compressive strength, chloride ion penetration, abrasion resistance and impact resistance the replacement rate effects of the recycled aggregates, blast-furnace slag and hwang-toh on the performance of vegetated water purification channel concrete were analyzed by using the response surface analysis method on the basis of the experimental results. In addition, an optimum mixing ratio of vegetated water purification channel concrete was determined by using the experimental results. The optimum mixing ratio was determined to be in 10.0% recycled coarse aggregates, 60.0% blast-furnace slag, 10.1% hwang-toh and 0.16% jute fiber. The compressive strength, chloride ion penetration, abrasion rate, and impact number of fracture test results of the optimum mixing ratio were 24.1 MPa, 999 coulombs, 10.30 g/mm3, and 20 number, respectively.

An Experimental Sutdy on the Fluidity and Strength Properties of Concrete According to the Replacement ratio of Non Firing Hwang-toh (비소성 황토의 치환율에 따른 콘크리트의 유동특성 및 강도특성에 관한 실험적 연구)

  • Lee, Jong-Sung;Lee, Seung-Min;Lee, Ji-Hwan;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.375-376
    • /
    • 2009
  • This study aims to provide basic material of concrete in replacement of non firing Hwang-toh, a traditional construction material in order to reduce CO$_2$ produced during manufacturing due to effectuation of the current Kyoto Protocol.

  • PDF

Physical, Mechanical Properties and Freezing and Thawing Resistance of Non-Cement Porous Vegetation Concrete Using Non-Sintering Inorganic Binder (비소성 무기결합재를 사용한 무시멘트 다공성 식생콘크리트의 물리·역학적 특성 및 동결융해저항성 평가)

  • Kim, Hwang Hee;Kim, Chun Soo;Jeon, Ji Hong;Park, Chan Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.5
    • /
    • pp.37-44
    • /
    • 2014
  • The physical, mechanical and freezing and thawing properties of non cement porous vegetation concrete using non-sintering inorganic binder have been evaluated in this study. Four types of porous vegetation concrete according to the binder type is evaluated. The pH value, void ratio, compressive strength, repeated freezing and thawing properties were tested. The test results indicate that the physical, mechanical and repeated freezing and thawing properties of porous vegetation concrete using the non-sintering inorganic binder is increased or equivalent compared to the porous vegetation concrete using the blast furnace slag + cement and hwang-toh + cement binders. Also, Vegetation monitoring test results indicate the porous vegetation concrete using the non-sintering inorganic binder have increasing effects of vegetation growth.

Analyses on Environment-friendliness of Waterproof Materials Based on Fish Toxicity Test (어독성 실험에 따른 방수재 친환경 특성 분석)

  • Kim, Sung-Kyun;Woo, Ji-Keun;Lee, Im-Gyu;Yoo, Hy-Ein;Jeong, Jae-Wook
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.1
    • /
    • pp.57-68
    • /
    • 2010
  • The purpose of this study is to analyze the characteristics of environment-friendliness of waterproof materials based on comprehensive experiments on waterproofness in terms of coefficients of permeability, harmfulness of waterproof materials and fish toxicity of Oryzias latipes mortality to verify eco-toxicity of each method of construction and waterproof material, which are to be applied by taking eco-toxicity into account when building ecological flows in upper areas on natural and artificial grounds. As a result, the following conclusions have been reached in this study: 1. In regard of the harmfulness analyzed, each material showed a different result of analytical value in each lab tank. Compared to input water, pH, COD, SS, T-P, and T-N values increased a little, but DO value decreased. The value of turbidity analyzed independent of the water quality standard of aquatic ecosystem set forth by the Ministry of Environment increased a little compared to the value in input water. 2. In the experiment of fish toxicity, compacted quicklime, cement fluid waterproof material, cement mortar waterproof material and bentonite powder were found to have 100% of fish mortality, respectively, and membrane waterproof material showed 83.3% of mortality, indicating strong fish toxicity. Improved asphalt sheet (63.3%) and synthetic rubber sheet (53.3%) were analyzed to have medium fish toxicity, while bentonite sheet (6.7%), Hwang-toh (6.7%) and clay (3.3%) showed relatively lower mortality and fish toxicity. 3. Regarding the analysis on waterproofness in terms of the coefficient of permeability of each waterproof material, improved asphalt sheet, synthetic rubber sheet, membrane waterproof material, cement fluid and mortar waterproof material and bentonite sheet were found impervious in case no leakage takes place in construction. Bentonite powder was found practically impervious based on the analytical results from the experiment done in compliance with weight ratios. So were the clay and Hwang-toh from the experimental results. To sum up such results as found in the experiment mentioned so far, the values of harmfulness and waterproofness analyzed were different in each lab tank, but there was absolutely little correlation with the mortality gained from the experiment on fish toxicity. In the experiment of fish toxicity, environment-friendly waterproof materials were analyzed, and it was found that clay, Hwang-toh and bentonite sheet are highly environment-friendly. In contrast, synthetic rubber and improved asphalt sheets were found to have medium-level environment-friendliness. Also, membrane water-proof materials, compacted quicklime, cement fluid and mortar waterproof material and bentonite powder were analyzed to have low environment-friendliness.

Effect of Reinforcing Fiber on Mechanical Properties and Chemical Resistance of Porous Concrete with Hwang-toh (황토를 포함한 다공성 식생콘크리트의 역학적 특성 및 내약품성에 미치는 보강섬유의 효과)

  • Lee, Jin-Hyung;Park, Chan-Gi;Park, Jong-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2A
    • /
    • pp.105-113
    • /
    • 2011
  • This study evaluated the effects of fibers on the mechanical properties and chemical solution resistance of porous concrete with fiber type (jute, pulp, PVA and nylon fiber) and fiber volume fraction (0.0%, 0.1%, 0.2%, 0.3%). The tests that were carried out to analysis the properties of porous concrete included compressive strength, void ratio, pH value, and chemical solution exposure with varying type and volume fraction of fiber were conducted. The type and volume fraction of fiber also affected the void ratio, compressive strength, flexural strength and chemical solution exposure. Increased volume fractions of fiber resulted in improved properties of the compressive strength, flexural strength and void ratio. However, the difference between the measured pH value and chemical resistance of porous concrete with fiber type and volume fraction was not significant.

Differential Diagnosis of Porcine Viral Diarrhea by Multiplex RT-PCR (Multiplex RT-PCR에 의한 돼지 바이러스 설사증의 감별 진단)

  • Hwang, Bo-Won;Kim, Toh-Kyung;Kim, Eun-Gyeong;Kim, Yong-Hwan;Yeo, Sang-Geon
    • Journal of Veterinary Clinics
    • /
    • v.23 no.3
    • /
    • pp.300-307
    • /
    • 2006
  • In the present study, methods of the reverse transcription-polymerase chain reaction(RT-PCR) were evaluated for the rapid detection and differentiation of transmissible gastroenteritis virus(TGEV), porcine epidemic diarrhea virus(PEDV) and rotavirus in piglets suffering from diarrhea. For the purposes, the PCR conditions were first confirmed for the amplification of VP7 gene of rotavirus and N gene of TGEV and PEDV using each specific primers and their annealing temperature. Multiplex RT-PCR methods were further determined to distinguish these viral infections and the results are as follows. For the specific amplification of these viral genes, the reliable PCR condition was determined as 30 cycles of reaction consisting each 1 min of denature at $94^{\circ}C$, annealing at $42^{\circ}C$ and polymerization at $72^{\circ}C$ with 1.0 mM $MgCl_2$. It was able to differentiate these viral infections in the intestines and feces of piglets suffering from diarrhea by duplex PCR for TGEV and PEDV and single PCR for rotavirus with a primer-annealing temperature of $42^{\circ}C$. When the multiplex RT-PCR were undertaken for the field samples, 17 cases of PEDV and 5 cases of rotavirus infections were differential diagnosed in a total of 92 samples of intestines and feces of the piglets with diarrhea.

Structural performance by strengthening types of wood frames using H shaped steel joints (H형강 접합부를 갖는 목조 골조의 보강형식에 따른 구조성능)

  • Kim, Soon-Chul;Moon, Youn-Joon;Yang, Il-Seung;Park, Geun-Hong
    • KIEAE Journal
    • /
    • v.8 no.3
    • /
    • pp.77-83
    • /
    • 2008
  • The effective mixture of structural laminated timber and other materials is expected to extend the potentials of building structures because of the potentials to realize high performance in structural safety. The classical joint types using drift pin and bolts are occurred local failures due to the small bearing area. In result, new joints using H shaped steel were suggested in this research. The objective of this study is to evaluate elasto-plastic behaviors by strengthening types of wood frames with new joints connecting structural laminated timber with H shaped steel. A total of five specimens of about one-second scale were tested. Specimens had columns with 1,050 height and $84mm{\times}100mm$ section, and a beams with 1,950mm length and $130mm{\times}100mm$ section. Also, the specimens were stiffened by brace, hwang-toh brick, and autoclaved lightweight concrete. The results of the test showed that the specimen stiffened with autoclaved lightweight concrete was characterized by fairly good strength and stiffness than those of the other specimens. Initial stiffness of H-2.0D-NS specimen with 2 times inserting length of beam height showed 1.33 times than that of H-1.5D-NS specimen. However, the strength of H-2.0D-NS specimen has not improved too much than H-1.5D-NS specimen.