• Title/Summary/Keyword: Hwang River

Search Result 595, Processing Time 0.041 seconds

Seasonal Changes of Zooplankton Distribution with Environmental Factors in Lake Jinyang (진양호 환경요인과 동물플랑크톤 군집 동태)

  • Yoon, Jong-Su;Jeong, Hyun-Gi;Kwon, Young-Ho;Shin, Chan-Ki;Hwang, Dong-Jin
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.4
    • /
    • pp.45-54
    • /
    • 2008
  • Our study indicates the zooplankton abundance with characteristics of water column and the vertical distribution in Lake Jinyang, South Korea. Seasonal changes of zooplankton community are determined by environmental parameters like water temperature, pH, dissolved oxygen, suspended solids and chlorophyll a. In lake Jinyang, this study showed that the zooplankton abundance in transition zone(St.1, St.2) was higher density than in lacustrine zone(St.3). Rotifers were dominant zooplankton and among them, Polyarthra spp., Keratella spp. and Nauplli(Copepoda) were common. But Cladoceran showed the low density. During survey period, zooplankton abundance with vertical distribution in surface layer(epilimnion) was higher than in bottom layer(hypolimninon). Zooplankton densities in Surface and middle layer showed positive relationship with water temperature and the densities in bottom layer(hypolimnion) showed positive relationship with chlorophyll a. Our assumption in spite of the short term study are supported by the facts that increase of temperature driven by climate change more maintains the thermocline duration by the summer temperature stratification. Thus the results suggest that the climate changes are an important source of changing zooplankton community feeding phytoplankton. So the zooplankton should be monitoring by the ecological management of Lake Jinyang to cope with climate changes like flood plain or drought.

Biological Assessment of Water Quality by Using Epilithic Diatoms in Major River Systems (Geum, Youngsan, Seomjin River), Korea (돌말(Epilithic Diatom) 지수를 이용한 국내 주요 하천(금강, 영산강, 섬진강)의 생물학적 수질평가)

  • Hwang, Soon-Jin;Kim, Nan-Young;Won, Doo Hee;An, Kwang Kuk;Lee, Jae Kwan;Kim, Chang Soo
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.784-795
    • /
    • 2006
  • The purpose of this study was to assess biological river water quality by using epilithic diatoms at 40 selected sites in Geum, Youngsan, and Seomjin River systems. The sampling and analyses were performed during three seasons including January, April and June in 2005. Various water quality parameters also were analyzed. We attempted to classify the water quality condition by epilithic diatom indices (DAIpo and TDI) with the results of corresponding analyses of various chemical water quality parameters. A five class system was delivered to describe the water quality condition ranged from "very good" to "very poor." We also proposed a way of classifying water quality condition by combining two diatom indices of DAIpo and TDI. Our results showed that biomass of epilithic diatoms varied not only seasonally but spatially; it was not likely that winter diatoms represent average water quality condition, due to high concentration of nutrients. Water quality status assessed by diatom indices was generally worse than that assessed by BOD, indicating that BOD standard likely underestimates the biological condition of the water body. Importantly, nutrient-based diatom index (TDI) generally overestimated organic matter-based index (DAIpo) at most study sites, indicating that diatoms in studied rivers were likely more affected by nutrients than organic matter. Thus, management strategy to improve river water quality in Korea is suggested to emphasize more on the nutrients than organic matters.

Comparison of Particle Size Analysis and Distribution of Heavy Metals in River and Lake Sediments (하천 및 호소 퇴적물 입도분석 방식의 비교와 입도에 따른 중금속물질의 분포경향)

  • Oh, Hyungsuk;Shin, Wonsik;Kim, Joonha;Hwang, Inseong;Hur, Jin;Shin, Hyunsang;Oh, Jeongeun;Huh, Inae;Kim, Younghun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.5
    • /
    • pp.15-23
    • /
    • 2010
  • Dry sieving, wet sieving and photoscattering analyzer were tested as particle size analyzing methods for sediments from rivers and lakes of Han river, Nakdong river, Youngsan river, and Kumgang river area. Dry sieving showed a big error due to coagulating effect over drying process and this phenomena was severe for lake sediment. Wet sieving and PSA showed an accurate results though wet sieving needs more labor and complicate processes. Freeze-dry or freeze-dry after oxidation of organics with hydrogen peroxide showed improved results but gave lower portion of fine particles in comparing with wet sieving. Heavy metal contents and extractable metal contents were investigated for the sediments and high heavy metal content and extractable amount were obtained from fine particles as expected. Using of proper particle size analyzing method is important and the sediment management should be focused on the fine particles.

Shoreline Changes Interpreted from Multi-Temporal Aerial Photographs and High Resolution Satellite Images. A Case Study in Jinha Beach (다중시기 항공사진과 KOMPSAT-3 영상을 이용한 진하해수욕장 해안선 변화 탐지)

  • Hwang, Chang Su;Choi, Chul Uong;Choi, Ji Sun
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.607-616
    • /
    • 2014
  • This research is to observe the shoreline changes in Jinha beach over the 50 years with aerial photographs and satellite images. The shoreline image feature was retrieved from the corrected images using wet and dry techniques and analyzed by DSAS from the statistical point of view. From 1967 to 1992, the mouth of Hoeya River was severely blocked and the northern shoreline off Jinha beach was eroded. The blockade of river mouth seemed to have been eased along with the completion of the dike, but soil continued to be deposited along the high sea away from the river month. Compared to the past, a layer of sediment has been formed off the northern coastline while the southern coastline has eroded. At least in the region subject to this research, the construction of a training dike is to blame. On top of that, a mere combination of dredges and artificial nourishment is not enough to take under control the changing shorelines properly. Thus, it is necessary to devise a more fundamental solution by taking into account reasons behind sediment from the river area that could change the shorelines besides the costal environment.

Applicability of unmanned aerial vehicle for chlorophyll-a map in river (하천녹조지도 작성을 위한 무인항공기 활용 가능성에 관한 연구)

  • Kim, Eunju;Nam, Sookhyun;Koo, Jae-Wuk;Lee, Saromi;Ahn, Changhyuk;Park, Jerhoh;Park, Jungil;Hwang, Tae-Mun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.3
    • /
    • pp.197-204
    • /
    • 2017
  • This study was carried out to apply the UAV(Unmanned Aerial Vehicle) coupled with Multispectral sensor for the algae bloom monitoring in river. The study acquired remote sensing data using UAV on the midstream area of Gum River, one of four major rivers in South Korea. Normalized difference vegetation index (NDVI) is used for monitoring algae change. This study conducted water sampling and analysis in the field for correlating with NDVI values. Among the samples analyzed, the chlorophyll concentration exhibited strong and significant linear relationships with NDVI, and thus NDVI was chosen for algae bloom index to identify emergence aspect of phytoplankton in river. Aerial remote sensing technology can provide more accurate, flexible, cheaper, and faster monitoring methods of detecting and predicting eutrophication and therefore cyanobacteria bloom in water reservoirs compared to currently used technology. As a result, there was high level of correlation in chlorophyll-a and NDVI. It is expected that when this remote water quality and pollution monitoring technology is applied in the field, it would be able to improve capabilities to deal with the river water quality and pollution at the early stage.

A Study on Characteristics of Natural Organic Matter using XAD and FTIR in Yeongsan River System (XAD 및 FT-IR을 이용한 영산강수계 광주시 유역 자연유기물질의 분포특성 연구)

  • Lee, Dong-Jin;Chon, Kang-Min;Kim, Sang-Don;Jung, Soo-Jung;Lee, Kyung-Hee;Hwang, Tae-Hee;Lim, Byung-Jin;Cho, Jae-Weon
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.358-363
    • /
    • 2011
  • This study investigated the characteristics of natural organic matter(NOM) with tXAD resin and FT-IR in the Yeongsan river system of Gwangju region. NOM fractionation by XAD 8/4 resins was used to classify hydrophobic and hydrophilic substances. FTIR was applied to classify functional groups in the structure of NOM. In the XAD investigation, most of the four site-samples were mainly hydrophilic substances. In March, hydrophobic substances were dominant in the Gwangju 1 site (GJ-1), while hydrophilic substances were dominant for the other sites. In May, samples of all four sites were hydrophilic with a vigorous activity of microorganism due to increasing temperatures. The October results were very similar with those from March. In the FT-IR investigation, most of the broad and large peaks were assigned to the aliphatic group, particularly the OH group, C-H, $C-H_2$, $C-H_3$, and C-O alcohol group. All were related to hydrophilic substances. Other peaks showed the aromatic group, particularly the C=O (Ketone) Group. As a result, there is an identification of NOM in the Yeongsan river system composing mainly of hydrophilic substances and functional groups (OH, C-H etc.) of the aliphatic compound.

The Physical Region of China Divided by the Characteristics of Drainage Patterns. (하계망패턴의 특색으로 구분한 중국의 자연지역)

  • Hwang, Sang-Ill
    • Journal of the Korean association of regional geographers
    • /
    • v.2 no.1
    • /
    • pp.151-164
    • /
    • 1996
  • The regional division by the characteristics of the drainage patterns is important to understand its physical environment comprehensively, because the drainage network develops in reflecting characteristics of geological, geographical and climatical features in the drainage basin keenly. This study is the attempt to divide physical region in China whose drainage pattern is diverse. Chinese drainage basin is mainly divided into the interior drainage basin and the peripheral drainage basin. The interior drainage basin is divided into (1)the deranged pattern and (2)the centripetal pattern. The peripheral drainage basin is divided into (1)the dendritic pattern, (2)the parallel pattern, (3)the radial pattern and (4)the anastomatic pattern. Drainage patterns of the interior drainage basin are formed by affecting geographical features and climatic conditions mainly. In the peripheral drainage basin, drainage patterns are formed by other factors: the parallel pattern is connected with geological structure lineament by tectonic movement, the radial pattern with changes of the river channel resulted from the Yellow River's overflow, the anastomotic pattern with human's activities. The distributional features of the physical region in China are as follows: The deranged pattern appears in Zangbai Plateau, the centripetal pattern does in arid basin of the northwest China. the parallel pattern does in Hengduan mountains affected strongly by tectonic movement between Yangtze paraplatform and Indian Plate, does in the upper stream of Yangtze River and Ganges River in the south of Qinghai-Xizang Plateau, the radial pattern in Huaihe Haihe River drainage basin appearing in the alluvial fan region of Yellow River's downstream and the anastomotic pattern does in the delta of Yangtze River, in the northern coastal plain of the Jiangsu-Province and in the delta of Zhujiang River. Except these areas in the peripheral drainage basin, the dendritic pattern is usually found in the other areas.

  • PDF

The Possibility of Flooding and Human Activities of Gyeongju Area in Ancint Times (고대 경주 지역의 홍수 가능성과 인간 활동)

  • Hwang, Sang-Ill
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.6
    • /
    • pp.879-897
    • /
    • 2007
  • The Royal District in Gyeungju-city was placed in lower surface of alluvial fan that was formed during the Last Glacial Age. During the Holocene, Bukcheon-river was reached in the dynamic equilibrium status and the form of river channel was similar or same to the present. The cases of dying people and carrying houses away by flood for ancient history in Gyeongju were six times, in 131, 160, 350, 496, 657 and 703. Like this big flood was happened at interval of $150{\sim}200$years. A period of big flood appearance in Bukcheon-river was extremely long. Therefore the people who had lived in Gyeongju for ancient history perceived that most part of riverbed of Bukcheon-river was a safety place from flood damages. Not only private houses. In east part of Bunhwangsa temple, that is, west side of Bukcheon-river where the river energy is maximum, a pillow block was built to prevent a lateral erosion but any artificial riverbank was not. In spite of high flood possibility in Bukcheon-river, there was no facility to prevent floods in this section. Also, deposits of flood are not identified. This point is very suggestive that Bukcheon-river did not flood for ancient history.

Effect of ammonia nitrogen and microorganisms on the elevated nitrogenous biochemical oxygen demand (NBOD) levels in the Yeongsan river in Gwangju (광주지역 영산강의 NBOD 발생에 대한 암모니아성 질소 및 미생물 영향 연구)

  • Jang, Dong;Cho, Gwangwoon;Son, Gyeongrok;Kim, Haram;Kang, Yumi;Lee, Seunggi;Hwang, Soonhong;Bae, Seokjin;Kim, Yunhee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.36 no.2
    • /
    • pp.81-95
    • /
    • 2022
  • The present study was performed to investigate the effects of NH3-N and nitrifying microorganisms on the increased BOD of downstream of the Yeongsan river in Gwangju. Water samples were collected periodically from the 13 sampling sites of rivers from April to October 2021 to monitor water qualities. In addition, the trends of nitrogenous biochemical oxygen demand (NBOD) and microbial clusters were analyzed by adding different NH3-N concentrations to the water samples. The monitoring results showed that NH3-N concentration in the Yeongsan river was 22 times increased after the inflow of discharged water from the Gwangju 1st public sewage treatment plant (G-1-PSTP). Increased NH3-N elevated NBOD levels through the nitrification process in the river, consequently, it would attribute to the increase of BOD in the Yeongsan river. Meanwhile, there was no proportional relation between NBOD and NH3-N concentrations. However, there was a significant difference in NBOD occurrence by sampling sites. Specifically, when 5 mg/L NH3-N was added, NBOD of the river sample showed 2-4 times higher values after the inflow of discharged water from G-1-PSTP. Therefore, it could be thought other factors such as microorganisms influence the elevated NBOD levels. Through next-generation sequencing analysis, nitrifying microorganisms such as Nitrosomonas, Nitroga, and Nitrospira (Genus) were detected in rivers samples, especially, the proportion of them was the highest in river samples after the inflow of discharged water from G-1-PSTP. These results indicated the effects of nitrifying microorganisms and NH3-N concentrations as important limiting factors on the increased NBOD levels in the rivers. Taken together, comprehensive strategies are needed not only to reduce the NH3-N concentration of discharged water but also to control discharged nitrifying microorganisms to effectively reduce the NBOD levels in the downstream of the Yeongsan river where discharged water from G-1-PSTP flows.

Dispersal of potential habitat of non-native species tilapia(Oreochromis spp.) inhabiting rivers in Korea (국내 하천에 서식하는 외래종 틸라피아(tilapia)의 잠재적 서식처 확산)

  • Ju Hyoun Wang;Jung Soo Han;Jun Kil Choi;Hwang Goo Lee
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.2
    • /
    • pp.101-108
    • /
    • 2023
  • Recently, in relation to climate change, many studies have been conducted to predict the potential habitat area and distribution range of tilapia and the suitability of habitat for each species. Most tilapia are tropical fish that cannot survive at water temperatures below 10 to 12℃, although some tilapia can survive at 6 to 8℃. This study predicted habitable areas and the possibility of spreading of habitat ranges of tilapia (Oreochromis niloticus and Oreochromis aureus) known to inhabit domestic streams. Due to climate change, it was found that habitats in the Geum River, Mangyeong River, Dongjin River, Seomjin River, Taehwa River, Hyeongsan River, and the flowing in East Sea were possible by 2050. In addition, it was confirmed that tilapia could inhabit the preferred lentic ecosystem such as Tamjin Lake, Naju Lake, Juam Lake, Sangsa Lake, Jinyang Lake, Junam Reservoir, and Hoedong Reservoir. In particular, in the case of tilapia, which lives in tributaries of the Geumho River, Dalseo Stream, and the Nakdong River, its range of habitat is expected to expand to the middle and lower of the Nakdong River system. Therefore, it is judged that it is necessary to prepare physical and institutional management measures to prevent the spread of the local population where tilapia currently inhabits and to prevent introduction to new habitats.