• Title/Summary/Keyword: Hurricane

Search Result 97, Processing Time 0.024 seconds

A Study on Relationships between Environmental Risk and Demographic Characteristics Using GIS (GIS를 이용한 환경 위험과 인구적 특성의 관계에 대한 연구)

  • Hwang, Seong-Nam;Cho, Chun-Man
    • Spatial Information Research
    • /
    • v.19 no.4
    • /
    • pp.1-10
    • /
    • 2011
  • This research examined relationships between Scientifically Estimated Environmental Risks (SEERs) of floods, hurricanes and hazardous material releases, and household characteristics. This research showed that there were no statistically significant relationships between most of the demographic characteristics (age, household size, tenure at the present home) and SEERs of the two natural hazards (a flood and a hurricane). These results support Drabek's findings (1986) that people tend to underestimate or ignore natural hazards in selecting their residence regardless of age, household size, and house tenure. Educational attainment and yearly household income were positively correlated with hurricane risk, but not with flood risk. By contrast, SEER of hazardous materials was correlated with all demographic characteristics mentioned above. This result may show that those who are relatively poorer and have lower educational level tend to be limited to living in communities more vulnerable to human-made risk.

Effects of Changing in Wind Environment of Typhoon Approaching to a Building (태풍 접근에 의한 바람 환경 변화가 건물에 미치는 영향)

  • Park, Jong-Kil;Jung, Woo-Sik;Choi, Hyoj-In
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.561-564
    • /
    • 2009
  • In order to reduce damage from natural disasters, prevention activities through analysis and predicting based on meteorological factor and damage data is required. Other countries already have continuously studied on natural disasters and developed reducing disasters damage. But the risk assessment model for natural disaster is not to Korea. Therefore, a previous model of hurricane, Florida Public Hurricane Loss Model(FPHLM), is the basis and is applying to domestic situation. Accordingly, this study introduces the variables selecting process because input variables should be selected under Korea present state and be used. The estimating representative damage method would be necessary along with selecting housing types representing relevant areas because estimating damage amount of all over relevant areas housing was very hard during damage estimating process. But there is no exact representative housing types in the Korea. Therefore, we select housing types applicable to risk assessment model for natural disasters representing the Korea through previous studies and literature reviews. We using ASCE 7-98(Minimum Design Loads for Buildings and Other Structures, 1998) standard which estimated wind load using 3-second gust. ASCE 7-98 divided Main Wind Force Resistance System(MWFRS) and Component and Cladding(C&C) and it estimated wind load. Therefore, we estimate wind load affected by 3-second gust of a typhoon Maemi through calculating wind load process using selected representative detached house types in the process of selecting input variables for previous disaster predict model. The result of houses damage amount is about 230 hundred million won. This values are limit the 1-story detached dwelling, 19~29pyeong(62.81~95.56 $m^2$) of total area and flat roof. Therefore, this process is possible application to other type houses.

  • PDF

Aeroelastic modeling to investigate the wind-induced response of a multi-span transmission lines system

  • Azzi, Ziad;Elawady, Amal;Irwin, Peter;Chowdhury, Arindam Gan;Shdid, Caesar Abi
    • Wind and Structures
    • /
    • v.34 no.2
    • /
    • pp.231-257
    • /
    • 2022
  • Transmission lines systems are important components of the electrical power infrastructure. However, these systems are vulnerable to damage from high wind events such as hurricanes. This study presents the results from a 1:50 scale aeroelastic model of a multi-span transmission lines system subjected to simulated hurricane winds. The transmission lines system considered in this study consists of three lattice towers, four spans of conductors and two end-frames. The aeroelastic tests were conducted at the NSF NHERI Wall of Wind Experimental Facility (WOW EF) at the Florida International University (FIU). A horizontal distortion scaling technique was used in order to fit the entire model on the WOW turntable. The system was tested at various wind speeds ranging from 35 m/s to 78 m/s (equivalent full-scale speeds) for varying wind directions. A system identification (SID) technique was used to evaluate experimental-based along-wind aerodynamic damping coefficients and compare with their theoretical counterparts. Comparisons were done for two aeroelastic models: (i) a self-supported lattice tower, and (ii) a multi-span transmission lines system. A buffeting analysis was conducted to estimate the response of the conductors and compare it to measured experimental values. The responses of the single lattice tower and the multi-span transmission lines system were compared. The coupling effects seem to drastically change the aerodynamic damping of the system, compared to the single lattice tower case. The estimation of the drag forces on the conductors are in good agreement with their experimental counterparts. The incorporation of the change in turbulence intensity along the height of the towers appears to better estimate the response of the transmission tower, in comparison with previous methods which assumed constant turbulence intensity. Dynamic amplification factors and gust effect factors were computed, and comparisons were made with code specific values. The resonance contribution is shown to reach a maximum of 18% and 30% of the peak response of the stand-alone tower and entire system, respectively.

Study on Disaster Prevention and Monitoring System for Forest Fire Using Multi-Source GSIS Data (GSIS 다증자료를 이용한 방재 탐지체계에 관한 연구)

  • Lee Kang-Won;Kang Joon-Mook
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.319-326
    • /
    • 2006
  • All around tile world there has been great human and economical damage continuously by disasters like the earthquakes and storms(Tsunami) in eastern asia which recently occurred, and like the New Orleams hurricane in USA. The situation is our countries damage from natural disasters due to heavy snow, storms, forest fires have been increasing In this research we obtained GSIS data of the 05' Yang-yang forest fire disaster area using multi-sensors like airborne laser data, GPS/INS, aerial photograph surveying. In result we produced digital topographical maps, digital elevation models, digital external models, digital images, infrared images. By, analyzing and comparing with past aerial photography we obtained the exact damage area, amount of damage, estimated tile areas where a landslide might occur, and we analyzed vegetations amount of damage and possibility of recovery.

  • PDF

Windborne debris and damage risk models: a review

  • Holmes, J.D.
    • Wind and Structures
    • /
    • v.13 no.2
    • /
    • pp.95-108
    • /
    • 2010
  • This review paper discusses research from the last few years relating to windborne debris risk models and the essential elements of engineering damage prediction models. Generic types of windborne debris are discussed. The results of studies of debris trajectories that are relevant to damage models are described - in particular the horizontal component of debris velocity as a function of distance travelled. The merits of impact momentum versus impact kinetic energy as a relevant parameter for predicting damage are considered, and how published data from generic cannon Impact tests can be used in risk models. The quantitative variation of debris impact damage with wind speed is also discussed. Finally the main elements of previously-proposed debris damage models are described.

Windborne debris risk analysis - Part I. Introduction and methodology

  • Lin, Ning;Vanmarcke, Erik
    • Wind and Structures
    • /
    • v.13 no.2
    • /
    • pp.191-206
    • /
    • 2010
  • Windborne debris is a major cause of structural damage during severe windstorms and hurricanes owing to its direct impact on building envelopes as well as to the 'chain reaction' failure mechanism it induces by interacting with wind pressure damage. Estimation of debris risk is an important component in evaluating wind damage risk to residential developments. A debris risk model developed by the authors enables one to analytically aggregate damage threats to a building from different types of debris originating from neighboring buildings. This model is extended herein to a general debris risk analysis methodology that is then incorporated into a vulnerability model accounting for the temporal evolution of the interaction between pressure damage and debris damage during storm passage. The current paper (Part I) introduces the debris risk analysis methodology, establishing the mathematical modeling framework. Stochastic models are proposed to estimate the probability distributions of debris trajectory parameters used in the method. It is shown that model statistics can be estimated from available information from wind-tunnel experiments and post-damage surveys. The incorporation of the methodology into vulnerability modeling is described in Part II.

Roof tile frangibility and puncture of metal window shutters

  • Laboy-Rodriguez, Sylvia T.;Smith, Daniel;Gurley, Kurtis R.;Masters, Forrest J.
    • Wind and Structures
    • /
    • v.17 no.2
    • /
    • pp.185-202
    • /
    • 2013
  • The goal of this study was to investigate the vulnerability of roof tile systems and metal shutters to roof tile debris. Three phases addressed the performance of tile roof systems and metal shutters impacted by roof tile debris. The first phase experimentally evaluated the tile fragment size and quantity generated by a tile striking a tile roof system. The second phase experimentally quantified the puncture vulnerability of common metal panel shutter systems as a function of tile fragment impact speed. The third phase provided context for interpretation of the experimental results through the use of a tile trajectory model. The results provide supporting evidence that while metal panel window shutters provide significant protection against a prevalent form of windborne debris, these systems are vulnerable to tile fragment puncture in design level tropical cyclones. These findings correlate with field observations made after Hurricane Charley (2004).

Application of a wireless pressure sensing system to coastal wind monitoring

  • Pinelli, J.P.;Subramanian, C.S.;Lapilli, C.;Buist, L.
    • Wind and Structures
    • /
    • v.8 no.3
    • /
    • pp.179-196
    • /
    • 2005
  • This paper describes the application of a wireless data acquisition system to monitor wind pressures and velocities with absolute pressure sensors and an anemometer. The system was developed for future deployment, as part of a research effort currently underway to instrument coastal homes in Florida to monitor roof wind pressures during hurricanes. The proposed wireless system will replace the current system that involves a large amount of hardwired connections from the sensors to the data processing unit that requires labor intensive wiring and preparation of the home. The paper describes comparison studies and field tests to assess the performance of the system. The new system offers the advantages of light hardware, ease of installation, capacity for 48 hours of continuous data acquisition, good frequency and amplitude responses, and a relatively simple maintenance. However, the tests also show that the shape of the shell that has been previously used to protect the sensors might interfere with the proper measurement of the pressures.

A Study on Interdisciplinary Education Model of Using Climate Change Film-Focusing on Documentary An Inconvenient Truth (기후변화 영화를 활용한 융합교육 모형연구: 다큐멘터리 <불편한 진실>을 중심으로)

  • Hwang, Young-mee;Oh, Jung-jin
    • Journal of Engineering Education Research
    • /
    • v.19 no.5
    • /
    • pp.57-64
    • /
    • 2016
  • This study is about interdisciplinary education model of using Davis Guggenheim's documentary film on global warming which is a big concern in climate change issues, An Inconvenient Truth. It based on Al Gore's slide speech. Through a course student analyzed the cause and phenomenon of global warming resulted from increase of $CO_2$ by using fossil fuel and its environmental science effects-heat wave, desertification, tornado, hurricane, sea level rise caused by melting glaciers, destroying ecosystem like habitat degradation of wild animals, for example polar bear, extreme cold wave caused by change of ocean currents- of global warming. After, student discussed of efforts to prevent global warming. This educational model is appropriate for lower grade student of environmental engineering and also available for converged majors or general education class.

Meteorological events causing extreme winds in Brazil

  • Loredo-Souza, Acir M.
    • Wind and Structures
    • /
    • v.15 no.2
    • /
    • pp.177-188
    • /
    • 2012
  • The meteorological events that cause most strong winds in Brazil are extra-tropical cyclones, downbursts and tornadoes. However, one hurricane formed off the coastline of southern Brazil in 2005, a tropical storm formed in 2010 and there are predictions that others may form again. Events such as those described in the paper and which have occurred before 1987, generate data for the wind map presented in the Brazilian wind loading code NBR-6123. This wind map presents the reference wind speeds based on 3-second gust wind speed at 10 m height in open terrain, with 50-year return period, varying from 30 m/s (north half of country) to 50 m/s (extreme south). There is not a separation of the type of climatological event which generated each registered velocity. Therefore, a thunderstorm (TS), an extra-tropical pressure system (EPS) or even a tropical cyclone (TC) are treated the same and its resulting velocities absorbed without differentiation. Since the flow fields generated by each type of meteorological event may be distinct, the indiscriminate combination of the highest wind velocities with aerodynamic coefficients from boundary layer wind tunnels may lead to erroneous loading in buildings.