• Title/Summary/Keyword: Humidity stability

Search Result 261, Processing Time 0.023 seconds

Relationship between Equilibrium Moisture Contents and Dimensional Stability of Handsheet Depending on Fibers Hornification (섬유의 각질화에 따른 수초지의 평형함수율과 치수안정성의 관계)

  • Park, Chang-Soon;Lee, Jin-Ho;Kil, Jung-Ha;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.3
    • /
    • pp.11-20
    • /
    • 2011
  • The conditions to which pulp fibers are exposed during paper production, converting, storage, use, and recycling can induce various changes in fiber morphology, surface characteristics, and suitability for paper production by recycled fibers. Most of those changes can be described by hornification. Paper has highly hygroscopic properties which affect dimensional change by relative humidity variation of surrounding condition. The purpose of this study was to investigate the dimensional stability, moisture contents and dip elongation of handsheets at different relative humidity conditions of recycled kraft pulp and BCTMP. By using recycled fibers, dimensional stability was increased because hygroscopic properties of fibers decreased with repeated recycling treatment. Dip elongation of recycled pulp was higher than that of virgin pulp because of its weak fiber-to-fiber bonding. By recycling pulp, the relative bonded area was decreased because fiber could not swell more than virgin pulp. Dimensional stability largely depended on the equilibrium moisture contents of paper, the fiber-to-fiber bonding strength, and the relative bonded area.

Effect of Softcapsule Fill Formulation on the Stability and the Disintegration Time of Ginkgo Biloba Extract (연질캅셀 제제 처방이 은행잎 엑스의 안정성 및 붕해 시간에 미치는 영향)

  • Kim, Young Soo;Kim, Su-Dong;Yoon, Sung-Hwa
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.848-851
    • /
    • 1999
  • In order to increase the stability of Ginkgo Biloba extract, we investigated the effect of three different fill formulations(SBO, PEG400, and PEG600 fill types) on the stability of Ginkgo Biloba extract in three different shell formulations (ssmb, smb and gmb shell types). The stabilities of each types were evaluated by testing their disintegration time sunder the condition of $40^{\circ}C$, 75% relative humidity(RH) for 8 weeks. The formulation of Ginkgo Biloba extract with ssmb and PEG600 formulation type showed the best stability among them.

  • PDF

Dimensional Change of Acetylated Hardwood (아세틸화 활엽수재의 치수변화 특성)

  • 한규성
    • Journal of the Korea Furniture Society
    • /
    • v.11 no.2
    • /
    • pp.79-84
    • /
    • 2000
  • It is well-known fact that dimensional stability of wood is greatly enhanced by acetylation of wood. This dimensional stability results from bulking of the reacted acetate within the cell wall, which reduces further swelling when the modified woods come into contact with water or water vapor. The purpose of this research was to determine the water absorption and dimensional stability of the acetylated solid wood in liquid water and in humidity tests. Beech and red oak were acetylated. Moisture and water absorption of acetylated wood were quite dependent on weight percent gain(WPG). Antiswelling efficiency(ASE) was quite dependent on WPG, but was not dependent on species.

  • PDF

Analysis of Impact Zone of Quantitative Risk Assessment based on Accident Scenarios by Meteorological Factors (기상요소별 사고 시나리오에 따른 정량적 위험성평가 피해영향범위 분석)

  • Kim, Hyun Sub;Jeon, Byeong Han
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.12
    • /
    • pp.685-688
    • /
    • 2017
  • Using ALOHA and PHAST Program, it was modeled assuming the leakage accident scenarios of chlorine which is designated as accident preparation chemical in chemical control act. End-point distances corresponding to ERPG-2 concentrations were calculated while varying annual mean temperature, wind speed, humidity, and atmospheric stability. The calculated endpoint distance values were compared and the correlation with each meteorological factor was analyzed. And we also investigated strengths and weaknesses of ALOHA and PHAST. The results show that ALOHA has little or no correlation with annual average temperature, humidity and it has a large correlation with wind speed and atmospheric stability. In the case of PHAST, the end-point distances were correlated with all the meteorological factors such as average annual temperature, wind speed, humidity, and atmospheric stability, Among them, the effect of atmospheric stability were the largest.

Effective Interfacial Trap Passivation with Organic Dye Molecule to Enhance Efficiency and Light Soaking Stability in Polymer Solar Cells

  • Rasool, Shafket;Zhou, Haoran;Vu, Doan Van;Haris, Muhammad;Song, Chang Eun;Kim, Hwan Kyu;Shin, Won Suk
    • Current Photovoltaic Research
    • /
    • v.9 no.4
    • /
    • pp.145-159
    • /
    • 2021
  • Light soaking (LS) stability in polymer solar cells (PSCs) has always been a challenge to achieve due to unstable photoactive layer-electrode interface. Especially, the electron transport layer (ETL) and photoactive layer interface limits the LS stability of PSCs. Herein, we have modified the most commonly used and robust zinc oxide (ZnO) ETL-interface using an organic dye molecule and a co-adsorbent. Power conversion efficiencies have been slightly improved but when these PSCs were subjected to long term LS stability chamber, equipped with heat and humidity (45℃ and 85% relative humidity), an outstanding stability in the case of ZnO/dye+co-adsorbent ETL containing devices have been achieved. The enhanced LS stability occurred due to the suppressed interfacial defects and robust contact between the ZnO and photoactive layer. Current density as well as fill factors have been retained after LS with the modified ETL as compared to un-modified ETL, owing to their higher charge collection efficiencies which originated from higher electron mobilities. Moreover, the existence of less traps (as observed from light intensity-open circuit voltage measurements and dark currents at -2V) are also found to be one of the reasons for enhanced LS stability in the current study. We conclude that the mitigation ETL-surface traps using an organic dye with a co-adsorbent is an effective and robust approach to enhance the LS stability in PSCs.

Physiological effects of formulation containing tannase-converted green tea extract on skin care: physical stability, collagenase, elastase, and tyrosinase activities

  • Hong, Yang-Hee;Jung, Eun Young;Noh, Dong Ouk;Suh, Hyung Joo
    • Integrative Medicine Research
    • /
    • v.3 no.1
    • /
    • pp.25-33
    • /
    • 2014
  • Background: Green tea contains numerous polyphenols, which have health-promoting effects. The purpose of this study was to evaluate the effect of tannase-converted green tea extract (TGE) formulation on the physical stability and activities of skin-related enzymes. Methods: Physical stability was evaluated by measuring the pH, precipitation, and colors at $25{\pm}2^{\circ}C$ /ambient humidity and at $40{\pm}2^{\circ}C$ \70%${\pm}$5% relative humidity for 4 months. Activities of collagenase, elastase, and tyrosinase as skin-related enzymes were assessed on TGE formulation. Results: The concentrations of epigallocatechin-3-gallate and epicatechin-3-gallate in green tea extract were greatly decreased to the extent of negligible level when treated with tannase. The formulation containing 5% tannase-converted green tea extract showed relatively stable pH, precipitation, and color features for 16 weeks. When TGE was added to the formulation, there was a significant increase in the inhibition of elastase and tyrosinase activities (p<0.05) compared with the formulation containing 5% normal green tea extract. Conclusion: The TGE could be used in cosmetics as skin antiwrinkling or depigmenting agent.

Study on Piezoresistive Humidity Sensor using Polycrystalline Silicon with Membrane (박막구조를 가진 폴리실리콘 압저항형 습도센서의 연구)

  • Park, Sung-Il;Park, Se-Kwang
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1422-1424
    • /
    • 1994
  • This paper deals with piezoresistive humidity sensor using polycrystalline silicon (Poly-Si ) with membrane in sensors of semiconductor. Poly-Si piezoresistors which have no temperature dependancy are deposited on silicon wafer, membrane is formed with micromachining technology, then polyimide is formed as a hygroscopic layer. Whereas the principle of conventional humidify sensors are based on the change in electrical properties of the material, the humidity induced volume change of a polyimide layer leads to a deformation of a silicon membrane in this case. This deformation is transformed into an output voltage by Poly-Si piezoresistive. Wheatstone bridge. Fabricated piezoresistive humidity sensors showed good linearity, response time, and long term stability.

  • PDF

Preparation of Water-Resistant Humidity Sensor Using Photocurable Reactive Oligomers Containing Ionene Unit and Their Properties (이온넨 단위를 가지는 광경화성 반응성 올리고머를 이용한 내수성 습도센서의 제조 및 감습 특성)

  • Jeon, Young-Min;Gong, Myoung-Seon
    • Polymer(Korea)
    • /
    • v.33 no.1
    • /
    • pp.19-25
    • /
    • 2009
  • New polyelectrolytes derived from ionene-containing photocurable reactive oligomer (PIDM) were prepared for water-resistant humidity-sensitive membranes. The mixture of PIDM, hexamethylene dimethacrylate (HDM), pentaerythritol triacrylate dimer (SP1013), and photoinitiator was simultaneously coated on the sensor electrode with photoinitiated radical polymerization. The pretreatment of the substrates with vinyl-type silane-coupling reagent was performed for improving the water durability and stability of the sensors at high temperature and humidity. When the resistance dependences on the relative humidity of the crosslinked PIDMs were measured, it was found that the resistance varied three orders of magnitude between 20 and 90%RH, which was required for the humidity sensor operating at ambient humidity. Their hysteresis, temperature dependence, response time, water durability, and high temperature/humidity stabilities were measured and evaluated as a humidity-sensing membrane.

Study of Humidity Sensing Properties Related to Metal Content of Aerosol Deposited Ceramic/Metal Composite Films (에어로졸 증착한 세라믹/금속 복합막의 금속 함량에 따른 습도 감지 특성 연구)

  • Kim, Ik-Soo;Koo, Sang-Mo;Park, Chulhwan;Shin, Weon Ho;Lee, Dong-Won;Oh, Jong-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.314-320
    • /
    • 2021
  • Controlling ambient humid condition through high performance humidity sensors has become important for various fields, including industrial process, food storage, and the preservation of historic remains. Although aerosol deposited humidity sensors using ceramic BaTiO3 (BT) material have been widely studied because of their longtime stability, there remain critical disadvantages, such as low sensitivity, low linearity, and slow response/recovery time in case of the sensors fabricated at room temperature. To achieve superior humidity sensing properties even at room temperature condition, BT-Cu composite films utilizing aerosol deposition (AD) process have been proposed based on the percolation theory. The BT-Cu composite films showed gradually improved sensing properties until the Cu concentration reached 15 wt% in the composite film. However, the excessive Cu (above 30 wt%) containing BT-Cu composite films showed a rapid decrease of the sensing properties. The results of observed surface morphology of the AD fabricated composite films, to figure out the metal filler effect, showed correlation between surface topography as well as size and the amount of open pores according to the metal filler content. Overall, it is very important not only dielectric constant of the humidity sensing films but also microstructures, because they affect either the variation range of capacitance by ambient humidity or adsorption/desorption of ambient humidity onto/from the humidity sensing films.

Development of PolymerElectrolytes Based on Ionic Liquids forHigh Temperature/Low Humidity PEFC Applications (고온/저가습 고분자전해질 연료전지를 위한 이온성 액체 기반 고분자 전해질막 개발)

  • Sekhon, Satpal Singh;Park, Jin-Soo;Cho, Eun-Kyung;Park, Gu-Gon;Kim, Chang-Soo;Lee, Won-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.40-43
    • /
    • 2008
  • High temperature polymer electrolyte membranes incorporating ionic liquids (ILs) in different polymers such as commercial fluorinated polymers, sulfonated polymers and recasted nafion have been developed. ILs based on imidazolium cation and different anions possess high ionic conductivity and good thermal stability and have been used in the present study. The membranes containing IL show conductivity ${\sim}10^{-2}S\;cm^{-1}$ above $100^{\circ}C$ under anhydrous conditions and are thermally stable up to $250-300^{\circ}C$. IL acts as a conducting medium in these electrolytes and plays the same role as played by water in fully hydrated nafion membranes. Due to high conductivity and good thermal stability, these membranes are promising materials for PEFCs at higher temperatures under anhydrous conditions.

  • PDF