• Title/Summary/Keyword: Humidity measurement

Search Result 471, Processing Time 0.034 seconds

Observational Study of Thermal Characteristics by Distribution Ratio of Green Area at Urban in Summer Season (하절기 관측을 통한 도시의 지역별 공간녹지분포율에 따른 열환경 특성 연구)

  • Jung, Im-Soo;Choi, Dong-Ho;Lee, Bu-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.8-16
    • /
    • 2011
  • The objective of this study is to analyze the characteristic of thermal environment in the summer season by conducting the field observation of temperature, relative humidity, and globe temperature in some parts of the city. Observation point was divided to a densely populated area, a residential area, a green area, a waterfront green area and a suburban district by the distribution ratio of green area. In this study, the correlation between maximum temperature and globe temperature, study on index for intensity of the tropical night and the temperature distribution characteristic of measurement points by the distribution ratio of green area were analyzed. The results of this study are as follows. (1) The difference between temperature and globe temperature by the distribution ratio of green area is confirmed. The difference of nighttime is more clearly that of daytime. (2) The average temperature and globe temperature of the densely populated area($29.2^{\circ}C$, $33.7^{\circ}C$) are higher than that of the waterfront green area($27.9^{\circ}C$, $32.0^{\circ}C$) by $1.3^{\circ}C$ and $1.7^{\circ}C$, respectively. (3) The number of tropical nights has different days of tropical nights by the distribution ratio of green area of 17days for the Daegu weather station, 14days for adensely populated area, 14days for a residential area, 6days for a green area, 2days for a waterfront green area, and 2days for a suburban district. (4) The results of the slope of trend line for the effects of the temperature on globe temperature change and the intercept for the size of the impact of radiant energy gained around by the analysis of the correlation between the maximum temperature and globe temperature can be utilized objective evaluation index of the each point's artificial effects.

A Study on Prevalence and Nursing Intervention of Bed Sore Patients who Received Regional Home Care Services (가정간호 대상자의 욕창발생 및 간호중재에 관한 조사연구)

  • Kim Keum-Soon;Cho Nam-Ok;Park Young-Suk
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.4 no.1
    • /
    • pp.43-60
    • /
    • 1997
  • This study was to identify the nursing intervention method in finding out the incidence, risk factor, prevention and treatment of bed sore cilents who received regional home care nursing services. The eleven home care nurse practitioners took the survey on 97 patients who received home care nursing service from Seoul City Nurses Association for one month from September 26 to October 26 1996. A modified version of Braden's bed sore assessment tool for bed sore risks and a tool for assessment of bed sore stage and measurement bed sore sizes by Bergstrom, Braden, Laguzza and Holman(1987) were as research tools for this study and a questionnare with 40 questions and 12 items on nursing activities was used to find out the prevention and treatment of bed sores. Also, two open ended questions were used on current approaches and efforts of the treatment being applied to clients. The finding of the study were summarized as following : 1. The rate of bed sore occurrence was 47.4% 2. The areas of bed sore occurrence were hip(28.9%), sacrum(18.6%), great trochanter(14.4%) and the average number of sore spots were 2.26 3. Two groups-one with bed sores and the other without-were studied to determine prediction factors for bed sore risks. Sensory function, humidity, level of activity, mobility, nutrition, skin friction and chapping and body temperature turned out to be statistically significant factors for bed sores. Also the age of clients turned out to be a individual characteristic variable significantly affecting the rate of bed sore occurrences. 4. The education for clients and family on systematic skin assessment and bed sores and practice of active/passive R.O.M. are mainly used as nursing activities for bed sore care. 5. The treatment method varied by stages of bed sores. Sometimes folk remedies like applying the powders of dried elm tree roots to sores were used. Good nutrition, frequent position change and skin care turned to be the most effective means to fast recovery of sores.

  • PDF

Property Studies of PAN/PVdF Composite Nanofiber Manufactured from Electrospinning (전기방사법으로 제조된 PAN/PVdF 복합나노섬유의 특성연구)

  • Yun, Jung-Hyun;Choi, Dong-You
    • 전자공학회논문지 IE
    • /
    • v.46 no.3
    • /
    • pp.6-11
    • /
    • 2009
  • In this paper, manufactured composite nanofiber by electrospinning that make spinning solvent according to weight of PAN/PVdF. PVdF content of composite nanofiber decreases, diameter of fiber decreased. Result that measure contact angle to confirm hydrophile property of PAN/PVdF composite nanofiber, PVdF content increases, could confirm that contact angle with water increases. After leave filter measurement sample for 25 hours in temperature of $40^{\circ}C$, humidity of 85%, result PAN/PVdF composite nanofiber that estimate efficiency could confirm that display performance of HEPA more than 99.95% and ULPA more than 99.999%. And fiber diameter is small, could confirm that filter performance increases. Tensile strength of bulk of PAN/PVdF composite nanofiber was 5-8MPa, expansion 100-300%. And strength and expansion could know that increase according as PVdF's content increases. Tensile strength was 3-8MPa degree after annealing PAN/PVdF composite nanofiber during 2 hours in 120t. Tensile strength was no change almost by annealing, and expansion could know that decrease.

Subjective Responses to Thermal Stress for the Outdoor Performance of Smart Clothes

  • Kwon, JuYoun;Parsons, Ken
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.3
    • /
    • pp.169-181
    • /
    • 2017
  • Objective: The aim of this study was to explore the influence of outdoor weather conditions on subjective responses during physical activity. Background: The largest difference between indoor and outdoor conditions is the existence of the sun. The heat load from the sun has an influence on the heat gain of the human body and the intense degree of solar radiation affected thermal comfort. Method: Thirty eight people were exposed to a range of climatic conditions in the UK. Weather in England does not have extremely hot and cold temperature, and the current study was conducted under warm (summer and autumn) and cool (spring and summer) climates. Measurements of the climate included air temperature, radiant temperature (including solar load), humidity and wind around the subjects. Subjective responses were taken and physiological measurements included internal body temperature, heart rate and sweat loss. Results: This study was conducted under four kinds of environmental conditions and the environmental measurement was performed in September, December, March, and June. The values for sensation, comfort, preference, and pleasantness about four conditions were from 'neutral' to 'warm', from 'not uncomfortable' to 'slightly comfortable', from 'slightly cooler' to 'slightly warmer', and from 'neither pleasant nor unpleasant' and 'slightly unpleasant', respectively. All subjective responses showed differences depending on air temperature and wind speed, and had correlations with air temperature and wind speed (p<0.05). However, subjective responses showed no differences depending on the radiant temperature. The combined effects of environmental parameters were showed on some subjective responses. The combined effects of air temperature and radiant temperature on thermal sensation and pleasantness were significant. The combined effects of metabolic rate with air temperature, wind speed and solar radiation respectively have influences on some subjective responses. In the case of the relationships among subjective responses, thermal sensation had significant correlations with all subjective responses. The largest relationship was shown between preference and thermal sensation but acceptance showed the lowest relationship with the other subjective responses. Conclusion: The ranges of air temperature, radiant temperature, wind speed and solar radiation were $6.7^{\circ}C$ to $24.7^{\circ}C$, $17.9^{\circ}C$ to $56.6^{\circ}C$, $0.84ms^{-1}$ to $2.4ms^{-1}$, and $123Wm^{-2}$ to $876Wm^{-2}$ respectively. Each of air temperature and wind speed had significant relationships with subjective responses. The combined effects of environmental parameters on subjective responses were shown. Each radiant temperature and solar radiation did not show any relationships with subjective responses but the combinations of each radiant temperature and solar radiation with other environmental parameters had influences on subjective responses. The combinations of metabolic rate with air temperature, wind speed and solar radiation respectively have influences on subjective responses although metabolic rate alone hardly made influences on them. There were also significant relationships among subjective responses, and pleasantness generally showed relatively high relationships with comfort, preference, acceptance and satisfaction. Application: Subjective responses might be utilized to predict thermal stress of human and the application products reflecting human subjective responses might apply to the different fields such as fashion technology, wearable devices, and environmental design considering human's response etc.

Comparison of Temperature Distribution in Agar Phantom and Gel Bolus Phantom by Radiofrequency Hyperthermia

  • Jung, Dong Kyung;Kim, Sung Kyu;Lee, Joon Ha;Youn, Sang Mo;Kim, Hyung Dong;Oh, Se An;Park, Jae Won;Yea, Ji Won
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.224-231
    • /
    • 2016
  • The usefulness of Gel Bolus phantom was investigated by comparing the temperature distribution characteristic of the agar phantom produced to investigate the dose distribution characteristic of radiofrequency hyperthermia device with that of the Gel Bolus phantom under conditions similar to those of an agar phantom that can continuously carry out temperature measurement. The temperatures of the agar phantom and the Gel Bolus phantom were raised to $36.5{\pm}3^{\circ}C$ and a temperature sensing was inserted at depths of 5, 10, and 15 cm from the phantom central axis. The temperature increase rate and the coefficient of determination were analyzed while applying output powers of 100 W and 150 W, respectively, at intervals of 1 min for 60 min under conditions where the indoor temperature was in the range $24.5{\sim}27.5^{\circ}C$, humidity was 35~40%, internal cooling temperature of the electrode was $20^{\circ}C$, size of the upper electrode was 250 mm, and the size of the lower electrode was 250 mm. The coefficients of determination of 150 W output power at the depth point of 5 cm from the central axis of the phantom were analyzed to be 0.9946 and 0.9926 in the agar and Gel Bolus phantoms, respectively; moreover, the temperature change equation of the agar and Gel Bolus phantoms with time can be expressed as follows in the state the phantom temperature is raised to $36^{\circ}C:Y(G)$ is equation of Gel Bolus phantoms (in 5 cm depth) applying output power of 150 W. Y(G)=0.157X+36. It can be seen that if the temperature is measured in this case, the Gel Bolus phantom value can be converted to the measured value of the agar phantom. As a result of comparing the temperature distribution characteristics of the agar phantom of a human-body-equivalent material with those of the Gel Bolus phantom that can be continuously used, the usefulness of Gel Bolus phantom was exhibited.

Prediction of weight loss of low temperature storage tomato (Tiwai 250) by non-destructive firmness measurement (비파괴적인 경도 측정을 통한 저온저장 토마토(티와이250)의 감모율 예측)

  • Cui, Jinshi;Yoo, Areum;Yang, Myongkyoon;Cho, Seong In
    • Food Science and Preservation
    • /
    • v.24 no.2
    • /
    • pp.181-186
    • /
    • 2017
  • This study was conducted to investigate the weight loss, firmness, external color and vitamin C (VC) content of tomatoes (Lycopersicon esculentum) using non-destructive method to measure identical tomato samples during 15 days storage at low temperature and high humidity. Tomatoes were harvested at the light red stage, sorted, box packed and then stored in thermo-hygrostat ($10{\pm}1^{\circ}C$, $90{\pm}10%RH$). The quality changes in weight loss, firmness and external color were measured every 3 day interval. Weight loss was increased by $1.13{\pm}0.15%$, but it may not be considered to affect quality. Surface color of fruit was changed, especially in lightness and hue angle value. The color values were analyzed by analysis of variance (ANOVA), and the results were significant (p<0.001). Firmness of fruit declined during storage, but it did not decrease in direct proportion. On the storage of day 15, firmness was decreased to 40% of initial state. At last, all the experiment data are summarized and the relationship between firmness and weight loss is analyzed to construct a linear regression mathematical model that can predict the weight loss with the firmness value measured by non-destructive method. This research result could be useful in helping tomato exporters and suppliers to get real-time quality factor by using proposed method and regression model.

The Observation of Scattering Patterns During Membrane Formation: Spinodal Decomposition and Nucleation Growth (스피노달 분해와 기핵성장에 따른 상분리 과정의 광산란 패턴의 관찰)

  • Kang, Jong-Seok;Huh, Hoon;Lee, Young-Moo
    • Membrane Journal
    • /
    • v.12 no.2
    • /
    • pp.97-106
    • /
    • 2002
  • Small angle light scattering (SALS) and field emission scanning electron microscope (FE-SEM) have been used to investigate the light scattering patterns with time evolved during water vapor quenching (relative humidity of 53 (${\pm}3)%$ at $26^{\circ}C$ of polysulfone (PSf)/NMP/Alcohol and chlorinated poly(vinyl chloride) (CPVC)/THF/Alcohol, respective1y. Time dependence of the position of the light scattering maximum was observed at PSf dope solutions, confirming spinodal decomposition (SD), while CPVC dope solutions showed a decreased scattered light intensity with an increased q-value, indicating nucleation & growth (NG). For the each system, domain growth rate in the intermediate and late stage of phase separation decreased with increasing the number of carbon of alcohol used as additive (non-solvent). Also, in the early stage for SD, the scattering intensity with time was in accordance with Cahn's linear theory of spinodal decomposition, regardless of types of non-solvent additive. Also, the size scales obtained by SALS were mutually compared to domain sizes gained by FE-SEM measurement. These observations of scattering pattern were much clearly observed for the 20PSf/70NMP/10n-butanol (w/w%) and agreed with the theoretical predictions for scattering patterns of each stage like the early, the intermediate, and the late stage of SD type phase separation. As the scattering maximum was observed at the larger angles (larger q) in the order of n-butanol > n-propanol > methanol > no alcohol, the pore size of final morphology decreased.

Development of an Automated and Continuous Analysis System for PM2.5 and Chemical Characterization of the PM2.5 in the Atmosphere at Seoul (자동연속측정시스템 개발 및 이 시스템을 이용한 서울 대기 중 PM2.5의 화학적 조성과 특성에 관한 연구)

  • Lee Bo Kyoung;Kim Young Hoon;Ha Jae Yoon;Lee Dong Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.4
    • /
    • pp.439-458
    • /
    • 2005
  • An automated analysis system for water soluble constituents in $PM_{2.5}$ has been developed. The system consists of a high capacity multi tube diffusion scrubber (MTDS), a low temperature particle impactor (LTPI), and two ion (anion and cation) chromatography (IC) systems. Atmospheric particles have been collected by passing sample air through a thermostated MTDS followed by a LTPI. This system allows simultaneous measurements of soluble ions in $PM_{2.5}$ at 30 minutes interval. At the air sampling flow rate of 1.0L/min, the detection limits of the overall system are in the order of tens of $ng/m^3$. This system has been successfully used for the measurement of particulate components of Seoul air from April 2003 to January 2004. $SO_4^{2-},\;NO_3^-,\;NH_4^+,\;NO_2^-,\;Cl^-,\;Na^+,\;K^+,\;Ca^{2+},\;and\;Mg^{2+}$ are the major ionic species for $PM_{2.5}$ at Seoul. Among them, $SO_4^{2-},\;NO_3^-\;and\;NH_4^+$ are the most abundant ions, contributed up to $86\%$ of the total and the concentrations were higher than those in any other urban sites in the world except for Chinese cities. There are high pollutant episodes which contribute about $15\~20\%$ of annual average values of the major ions. During the episode, the all parcels were transported from the asian continent and $PM_{2.5}$ were significantly neutralized. This suggests that aged and long range transported pollutants caused the high pollutant episodes. They showed a distinct daily and seasonal variations:they showed a peak in the early morning caused by the night-time accumulation of particulate matters. Atmospheric reactions including gas-to-particle reactions and inter-particle reactions and meteorological parameters including relative humidity and ambient temperature were described with related to the $PM_{2.5}$ 5 concentrations. All of the ionic species showed higher concentrations during the spring than those for summer and winter.

Climate Aridity/humidity Characteristics in Seoul According to Changes in Temperature and Precipitation Based on RCP 4.5 and 8.5 (RCP 4.5와 8.5에 따른 기온 및 강수량변화를 반영한 서울 기후 건조/습윤특성)

  • Rim, Chang-Soo;Kim, Seong-Yeop
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.5
    • /
    • pp.421-433
    • /
    • 2014
  • In this study, monthly and annual aridity indices which are the ratios of precipitation to potential evapotranspiration in Seoul climate measurement station were analyzed for past 50 years (1961~2010), and the ratio of aridity index simulated by climate change scenarios (RCP 4.5 and 8.5) for each future period (2011~2040, 2041~2070, 2071~2100) to aridity index for the past period (1971~2000) was analyzed. Furthermore, 5 different potential evapotranspiration equations (FAO P-M, Penman, Makkink, Priestley-Taylor, Hargreaves) were applied to analyze the effect of potential evapotranspiration equation on estimating aridity index and aridity index variation ratio (%). The study results indicate that the monthly precipitation, average temperature and potential evapotranspiration were increased in each future period as compared to past period for both RCP 4.5 and RCP 8.5. Furthermore, winter period showed more significant increase of potential evapotranspiration than summer period, but aridity index showed different patterns as compared with potential evapotranspiration reflecting the influence of precipitation. Therefore, it is necessary to make preparation for the increment of winter evapotranspiration in terms of water resources management. The monthly and annual aridity indices based on future climate change scenarios were greatly different according to potential evapotranspiration equations; however, monthly and annual patterns of aridity index variation ratio (%) in the future period as compared to past period were very similar regardless of applied potential evapotranspiration equation.

An Analysis of Global Solar Radiation using the GWNU Solar Radiation Model and Automated Total Cloud Cover Instrument in Gangneung Region (강릉 지역에서 자동 전운량 장비와 GWNU 태양 복사 모델을 이용한 지표면 일사량 분석)

  • Park, Hye-In;Zo, Il-Sung;Kim, Bu-Yo;Jee, Joon-Bum;Lee, Kyu-Tae
    • Journal of the Korean earth science society
    • /
    • v.38 no.2
    • /
    • pp.129-140
    • /
    • 2017
  • Global solar radiation was calculated in this research using ground-base measurement data, meteorological satellite data, and GWNU (Gangneung-Wonju National University) solar radiation model. We also analyzed the accuracy of the GWNU model by comparing the observed solar radiation according to the total cloud cover. Our research was based on the global solar radiation of the GWNU radiation site in 2012, observation data such as temperature and pressure, humidity, aerosol, total ozone amount data from the Ozone Monitoring Instrument (OMI) sensor, and Skyview data used for evaluation of cloud mask and total cloud cover. On a clear day when the total cloud cover was 0 tenth, the calculated global solar radiations using the GWNU model had a high correlation coefficient of 0.98 compared with the observed solar radiation, but root mean square error (RMSE) was relatively high, i.e., $36.62Wm^{-2}$. The Skyview equipment was unable to determine the meteorological condition such as thin clouds, mist, and haze. On a cloudy day, regression equations were used for the radiation model to correct the effect of clouds. The correlation coefficient was 0.92, but the RMSE was high, i.e., $99.50Wm^{-2}$. For more accurate analysis, additional analysis of various elements including shielding of the direct radiation component and cloud optical thickness is required. The results of this study can be useful in the area where the global solar radiation is not observed by calculating the global solar radiation per minute or time.