• 제목/요약/키워드: Humic matter

검색결과 136건 처리시간 0.023초

토양중 [$^{14}C$Carbofuran의 분해 및 비추출성 잔류분의 특성 (Degradation of [$^{14}C$]Carbofuran in Soils and Characterization of its Nonextractable Residues)

  • 박창규;이영득
    • Applied Biological Chemistry
    • /
    • 제38권3호
    • /
    • pp.263-268
    • /
    • 1995
  • 침투성 살충제의 일종인 carbofuran을 대상으로 수분조건을 달리한 논과 밭상태의 토양중 분해경로상 차이점과 비추출성 잔류분의 특성을 비교, 검토하였다. 침수 및 습윤상태로 수분조건을 조절한 토양에 [$3-^{14}C$]Carbofuran을 정상적 포장살포약량인 1.0mg/kg (87.8kBq/50g 토양)수준으로 처리하고 경시적으로 특성별 방사능과 분해산물의 분포를 조사하였다. 토양중 carbofuran의 초기분해경로는 수분조건에 따라 차이를 보여 침수상태에서는 가수분해가 우세하였던 반면 습윤상태에서는 산화가 주된 초기분해반응으로 나타났다. 또한 분해속도에 있어서도 토양중 반감기가 각각 34일 및 50일로 수분조건에 따라 차이를 보였다. 토양중에 처리한 carbofuran 및 분해산물중 상당량이 비추출성으로 전환, 처리 60일후 $24{\sim}39%$에 달하였으며 주로 토양유기물에 분포하였다. 비추출성 방사능의 토양유기물중 분포를 조사한 결과 처리후 시간이 경과함에 따라 carbofuran 및 그 분해산물들은 fulvic acid, humic acid 및 humin분획에 혼입되었으며 겔여과크로마토그래피에 의하여 분자량 $10^4$ 이상의 혼입고분자화합물이 존재함을 밝혔다.

  • PDF

이포보 상류 용존 유기물의 공간적 분포 분석 (Spatial Distribution of Dissolved Organic Matter Compositions Upstream of Ipobo)

  • 윤상미;최정현
    • 한국물환경학회지
    • /
    • 제34권4호
    • /
    • pp.399-408
    • /
    • 2018
  • This research investigated the effects of weir (Ipobo) construction on the dynamics and the related spatial distributions of pollutants inflowing from tributaries (Yanghwacheon and Bokhacheon). Conductivity measurements and water sampling were conducted longitudinally, horizontally, and vertically in the waterbody upstream of the area located in Ipobo. Additionally, collected water samples were used for the dissolved organic carbon (DOC) analysis and fluorescence analysis which results in the SUVA, HIX, BIX, and FI calculation and parallel factor analysis (PARAFAC). Consequently, the results of the Conductivity, DOC, SUVA, and HIX showed that high concentration of pollutants that were flowing from the area of Bokhacheon which was mixed along the flow of the main river. The results of the BIX and FI did not show significant difference along the river flow which represented that allochthonous and terrestrial DOM, and for this reason was dominated in the whole waterbody rather than just the autochthonous DOM. The PARAFAC results showed that the two fluorescence components, humic-like and protein-like, constituted the fluorescence matrices of the water samples. The prevailing discipline notes that the two components were inflowing from the tributaries, however, a refractory component, humic-like substances, was relatively accumulated near the weir. From the results, the dynamics and spatial distributions of the DOM are dependent on the DOM characteristics, which induces the application of a specialized DOM analysis method to investigate the effects of a subsequent weir construction on the dynamics and spatial distributions of pollutants inflowing from the tributaries.

처리토에 녹비 식물 청보리 경작 시 휴믹 물질이 식물생장 및 생물학적 토양 인자에 주는 긍정적 영향 (Positive Effects of Humic Substances on Plant Growth and Biological Soil Indicators when Spring barley is Green Manured on Reclaimed Soils)

  • 강수아;박혜선;이윤노;배범한
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제29권1호
    • /
    • pp.51-62
    • /
    • 2024
  • A study was performed to investigate the positive impacts of humic substances (HS) on the growth of green barley, a type of green manure plant. The study was conducted in a pot culture using two different types of reclaimed soils that had been treated by land farming (DDC) and thermal desorption (YJ) methods, respectively. The experimental conditions consisted of three treatments: plant only (P), plant plus 2% HS, and no plant (control). After 89 days of culture in a controlled growth chamber, the growth of spring barley and activity of seven soil enzymes were measured. The results indicated that the addition of HS had a substantial (p<0.10) positive effect on shoot biomass in both types of soil. Furthermore, the addition of HS notably (p<0.05) enhanced all seven soil enzyme activities in both soils. Both the aboveground and belowground parts of barley plants were returned to soil and aged for 10 weeks in the same growth chamber, which resulted in notable enhancement in soil health indicators. These improvements included an increase in organic matter, a drop in bulk density, and an increase in the activity of seven different soil enzymes. When lentil seeds were planted in the aged soils, the development of the seedlings was more vigorous than that in the control in both soils, although allelopathy of barley suppressed lentil germination in soil with pH 7.0 but not in soil with pH 8.5.

금속이온 치환법으로 제조된 티타니아를 이용한 유기물 분해에 대한 연구 (Study of Degradation of Organic matter using prepared Titania by Metal ions substitution process)

  • 이규환;이동석
    • 산업기술연구
    • /
    • 제28권A호
    • /
    • pp.19-22
    • /
    • 2008
  • In recent years, much attention has been paid to "Photocatalytic oxidation" as an alternative technique, where the pollutants are degraded by UV-irradiation in the presence of a semiconductor suspension such as titanium dioxide. $TiO_2$ is the most often used photocatalyst due to its considerable photocatalytic activity, high stability, non-environmental impact and low cost. 1n this research, the photocatalytic degradation of humic acid, acetaldehyde and methylene blue in $UV/TiO_2$ systems has been stydied. The effect of calcination temperature for manufacturing of $TiO_2$ photocatalysts and type of photocatalysts on photodegradation has been investigated. Photocatalysts with various metal ions(Mn, Fe, Cu and Pt) loading are tested to evaluate the effects of metal ions impurities on photodegradation. The photodegradation efficiency with $Pt-TiO_2$ or $Fe-TiO_2$ or $Cu-TiO_2$ is higher than Degussa P-25 powder. However, the photodegradation efficiency with $Mn-TiO_2$ is lower than Degussa P-25 powder. The photocatalytic properties of the nanocrystals were strongly dependent upon the crystallinity, particle size, standard reduction potential of various transition metal and electronegativity of various transition metal. As a result photocatalysts with various metal ion loading evaluated the effect of photodegradation.

  • PDF

응집제 주입에 따른 NOM과 저압막의 막오염 특성에 관한 연구 (A study on the fouling characteristics of low-pressure membranes and NOM with coagulation pretreatment)

  • 박상혁;홍종현;유명진;구자용
    • 상하수도학회지
    • /
    • 제24권2호
    • /
    • pp.237-246
    • /
    • 2010
  • This study was carried out to compare the performances of hydrophobic and hydrophilic membranes in the filtration of the pretreatment waters using coagulants such as PAC and PAHCs, and to investigate the influence of NOM characteristics on the fouling of membranes. As a result, the hydrophobic fraction was more effectively removed by PAHCs, however the transphilic and hydrophilic fraction were more effectively removed by PAC on NOM removal. Raw water showed the highest response in the range of humic substances, and pre-coagulated waters with PAC and PAHCs followed. It was also observed that the fouling effect for a hydrophobic membrane was greater than that of a hydrophilic membrane with a similar pore size, due to fouling caused by adsorption. Foulants causing significant flux decline were alcoholic compounds (polysaccharide-like) and humic substances including aromatic groups. Especially, it appeared that alcoholic compounds such as polysaccharide-like substances which mostly remained after coagulation pretreatment had most influence on fouling. It was found that fouling were influenced by each fraction NOM components depending on coagulants used. And PAHCs was more efficient for membrane fouling than PAC.

소독부산물 생성에 미치는 물리화학적인 인자 영향 (The Effect of Physical Chemistry Factors on Formation of Disinfection by-products)

  • 정용;김준성
    • 한국환경과학회지
    • /
    • 제14권10호
    • /
    • pp.965-972
    • /
    • 2005
  • This research studied the effect of factors that are able to form disinfection by-products (DBPs) of chlorination, including natural organic matter (NOM) with sewage, bromide ions, pH and contact time. Trihalomethane (THMs) yield of $0.95{\mu}mol/mg$ was higher than other DBPs yield for the chlorinated humic acid samples. THMs yield of sewage sample was $0.14{\mu}mol/mg$ and haloacetonitriles (HANs) yield in the sewage samples were $0.13{\mu}mol/mg$ but only $0.02{\mu}mol/mg$ for the humic acid samples. As the concentration of bromide ions increased, brominated DBPs increased while chlorinated DBPs decreased, because bromide ions produce brominated DBPs. THMs were highest $(55.55{\mu}g/L)$ at a pH of 7.9 and haloacetic acids (HAAs) were highest $(34.98{\mu}g/L)$ at a pH of 5. Also THMs increased with increasing pH while HAAs decreased with increasing pH. After chlorination, the rate of THMs and HAA formation are faster at initial contact time and then reaches a nearly constant value after 24 hours. This study considers ways to reduce DBP formation by chlorination.

하수처리수 재이용시설의 공정별 용존유기물질 거동 및 특성 (Fate and Characteristics of Dissolved Organic Matters in a Water Reclamation Facility, Korea)

  • 권은광;이원태
    • 한국물환경학회지
    • /
    • 제37권5호
    • /
    • pp.355-362
    • /
    • 2021
  • This study investigated the fate of dissolved organic matter (DOM) in a water reclamation facility (WRF) in Korea. The WRF consists of coagulation, sedimentation, microfiltration, and reverse osmosis (RO) components. The production capacity of WRF is 90,000 m3/day. The reclaimed water is reused as industrial water. We also characterized DOM in raw, processed, and finished waters based on analysis of dissolved organic carbon (DOC), ultraviolet absorbance at 254 nm (UVA254), fluorescence excitation emission matrix (FEEM), and DOC fractions via liquid chromatography-organic carbon detection (LC-OCD). Based on the results of DOC, UVA254, and FEEM analyses, neither the coagulation/sedimentation nor the microfiltration at the WRF effectively removed DOM. The RO process removed more than 94% of DOM. The raw water (i.e., secondary treated effluent obtained from a wastewater treatment plant) exhibited tryptophan-like peaks, which are a promising marker of wastewater, in the FEEM analysis. Coagulation and microfiltration failed to eliminate the wastewater marker, whereas RO completely removed it. The raw water also carried high levels (89.4%) of hydrophilic and low-molecular weight substances, which are difficult to remove via coagulation-sedimentation or microfiltration. Humic substance was a major component of the hydrophilic fractions. Based on the LC-OCD analysis, RO effectively removed the humic and polymeric materials from DOM.

연안환경에서 유기물 지표 개발을 위한 가능성 평가: 용존유기탄소와 형광용존유기물질 활용 (Evaluation of the Possibility of Developing Organic Matter Indicators in Coastal Environments: Utilization of Dissolved Organic Carbon and Fluorescent Dissolved Organic Matter)

  • 이민영;양경선;김순찬;김태훈
    • Ocean and Polar Research
    • /
    • 제43권2호
    • /
    • pp.65-72
    • /
    • 2021
  • In order to evaluate the dissolved organic carbon (DOC) and fluorescent dissolved organic matter (FDOM), as indicators of organic matter in the coastal environments, we measured the concentrations of DOC, FDOM, and chemical oxygen demand (COD) in saline groundwater (Woljeong, Pyoseon, and Hwasun beaches) and coastal seawater (Haengwon, Gwideok, Pyoseon, and Yeongnak) in Jeju, Korea. The highest concentrations of DOC and COD in groundwater were found in Woljeong and Pyoseon, and those in coastal water were observed in Haengwon and Pyoseon, indicating that the higher concentrations of DOC and COD seem to be associated with saline groundwater-driven dissolved organic matter (DOM) and/or biogeochemical processes. According to origin and optical properties of DOM using FDOM as a tracer, proportion of humic-like FDOM, more refractory DOM, was relatively greater in the groundwater than in the coastal water. With regard to this result, there was no relationship between DOC and COD in groundwater, while DOC showed a good positive correlation (r2 = 0.66) with COD in coastal water. This result indicates that COD as an indicator of assessment of DOM has a limitation in which it is difficult to quantify refractory DOM. Although DOC is a potential alternative to COD in the coastal environments, particulate organic carbon cannot be negligible due to relatively higher concentration compared to the open ocean. Therefore, the use of total organic carbon (TOC) as a replacement of COD in the coastal ocean is important, and the evaluation criterion of the TOC is necessary in order to evaluate of organic matter indicator in the various coastal environments.

하천 수문 특성과 유기물 성상 변화에 따른 하상 유동상 퇴적물 거동 연구 (Formation and Deformation of the Fluid Mud Layer on Riverbeds under the Influence of the Hydrological Property and Organic Matter Composition)

  • 트렁 틴 휜;허진;이병준
    • 한국물환경학회지
    • /
    • 제40권2호
    • /
    • pp.79-88
    • /
    • 2024
  • This study employed field measurements and biogeochemical analysis to examine the effects of seasonal conditions (e.g., temperature and precipitation) and human intervention (e.g., dam or weir construction) on the chemical composition of dissolved organic matter, flocculation kinetics of suspended particulate matter, and formation of the fluid mud layer on riverbeds. The results indicated that a water environment with a substantial amount of biopolymers offered favorable conditions for flocculation kinetics during an algal bloom period in summer; a thick fluid mud layer was found to be predominated with cohesive materials during this period. However, after high rainfall, a substantial influx of terrigenous humic substances led to enhanced stabilization of the particulate matter, thereby decreasing flocculation and deposition, and the reduced biopolymer composition served to weaken the erosion resistance of the fluid mud on the riverbed. Moreover, a high-turbulence condition disaggregated the flocs and the fluid mud layer and resuspended the suspended particulate matter in the water column. This study demonstrates the mutual relationship that exists between biogeochemistry, flocculation kinetics, and the formation of the fluid mud layer on the riverine area during different seasons and under varying hydrological conditions. These findings are expected to eventually help inform the more optimal management of water resources, which is an urgent task in the face of anthropogenic stressors and climate change.

The evaluation for soil carbon sequestration with rice straw treatments in paddy fields

  • Seo, Myung-Chul;Cho, Hyeon-Suk;Seong, Ki-Yeong;Kim, Min-Tae;Ryu, Jin-Hee;Lee, Geon Hwi
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.340-340
    • /
    • 2017
  • Rice straw is very important to maintain fertility in agricultural soil with several aspects such as carbon and nitrogen cycles in Korea. Recently, concerning about climate change, carbon sequestration in agricultural land has become one of the most interesting and debating issues. Rice straw is most representative source of organic material produced in agricultural sectors. In order to evaluate changes of soil carbon treated by rice straw during cultivating rice in paddy field, we carried out to treat rice straw with 0, 0.5, 1, 1.5, and $2.0ton\;ha^{-1}$ at $50{\times}50{\times}20cm$ blocks made of wood board, and analyze contents of fulvic acid and humic acid form, and total carbon periodically. The experiment was conducted in 2013-2016, and sampled with interval in a month. The organic material was applied to treatment blocks in 2 weeks ago in rice transplanting of each year. Total carbon in beginning time is low as $7.9g\;kg^{-1}$. The contents of total carbon with treatments of rice straw after experiment are recorded as 8.7, 11.2, 9.5, 10.5, and $10.9g\;kg^{-1}$ applied by 0, 0.5, 1, 1.5, and $2.0ton\;ha^{-1}$, respectively. When trend lines were calculated on changes of soil carbon in periods of experiments, The trend equations of soil carbon changes with treatments of 0, 0.5, 1, 1.5, and $2.0ton\;ha^{-1}$ were Y=0.0015X+8.479, Y=0.073X+8.2577, Y=0.0503X+8.4477, Y=0.0822X+8.2103, and Y=0.082X+8.5736. These trends suggested several results. When rice straw was applied in cultivating paddy fields, most carbon in rice straw would be decomposed regardless the amount of rice straw in soil. We calculated sequestration rate of applied rice straw as about 0.1% per year during rice cultivation in paddy fields. It means that if farmer want to increase 1% soil organic matter by using application of rice straw returned after cultivation, famer should apply rice straw continuously for ten years. The change of soil carbon as fulvic acid, humic acid, and humane is showed that only content of carbon as mumine is increased significantly while fulvic acid and humic acid were changed in range of 10 to 30% among total carbon in soil. In conclusion, to sequestrate soil carbon with rice straw, it is important for rice straw to apply continuously every year. The amount of rice straw applied is not much effected to increase soil organic matter.

  • PDF