• 제목/요약/키워드: Humic matter

검색결과 136건 처리시간 0.021초

상수중 Trihalomethanes, 농약, 중금속 및 합성세제의 효율적인 제거를 위한 수처리 방법 제 1보. -상수중 Trihalomethanes의 효율적인 제거방법- (Water Treatment Method for Removal of Trihalomethanes, Pesticides, Heavy Metals and Detergent in Drinking Water (1). -Effective Removal Method of Trihalomethanes in Drinking Water-)

  • 박종우;김장억
    • Applied Biological Chemistry
    • /
    • 제37권6호
    • /
    • pp.472-479
    • /
    • 1994
  • 상수처리시 토양현탁액과 같은 유기물이 있을 때 산화제, 응집제 및 흡착제의 종류를 달리하고 처리방법을 변경시켰을 때 THMs 및 유기물의 제거정도를 조사하였다. 산화제로 처리된 $ClO_2$가 다른 산화제인 $Cl_2,\;NH_2Cl,\;KMnO_2$$O_3$ 보다 THMs 생성억제와 THMs의 전구물질인 유기물을 제거시키는데 가장 효율적이었다. 산화제$(Cl_2,\;NH_2Cl,\;KMnO_4,\;ClO_2,\;O_3)$를 응집 이후에 처리하였을 때 유기물의 양은 거의 변화가 없었으나 THMs의 생성량은 응집 이전 처리보다 약 $36.7{\sim}8.2%$ 정도 감소하였다. 수중 유기물을 응집 제거시키기 위하여 응집제로 alum과 ferric sulfate를 처리하였을 때 응집 효율은 유기물의 분자량 분포에 따라 상이하게 나타났다. THMs 제거 및 생성 억제를 위한 활성탄의 처리는 여과 이후의 처리가 산화제 처리 이전의 활성탄 처리보다 효과적이었다.

  • PDF

생분해 과정 중 용존 유기물 특성 변화에 미치는 휴믹물질의 영향 (Effects of Humic Substances on the Changes of Dissolved Organic Matter Characteristics by Biodegradation)

  • 박민혜;이보미;이태환;허진;양희정
    • 한국물환경학회지
    • /
    • 제25권3호
    • /
    • pp.419-424
    • /
    • 2009
  • Characteristics of humic substances on the changes in dissolved organic matter (DOM) characteristics by biodegradation was investigated using three types of the artificial water samples composed of glucose and Suwannee River fulvic acid (SRFA). Some selected DOM characteristics including the specific UV absorbance (SUVA), the synchronous fluorescence spectra and the molecular weight (MW) were compared for the artificial water samples before and after 28-day microbial incubation. The changes of the DOM characteristics were minimal for SRFA during the incubation whereas they were significant for glucose. SUVA, dissolved organic carbon (DOC)-normalized fluorescence intensity, and MW values of glucose increased, suggesting that such labile organic compounds could be exclusively transformed into more humidified materials by biodegradation. For glucose-SRFA mixture, the selected DOM characteristics were greater than those estimated using the assumption that the individual changes of either glucose or SRFA are conservative for the mixture of the two materials. Our results suggest that the presence of humic substances (HS) may lead to the enhancement of the formation of refractory organic materials during biodegradation of labile compounds. Detailed analyses of size exclusion chromatography (SEC) revealed that the enhancement occurred for the DOM mixture with a MW range between 500 Da to 4000 Da.

Effect of Organic Materials in Water Treatment by Hybrid Module of Multi-channel Ceramic Microfiltration and Activated Carbon Adsorption

  • Park, Jin-Yong;Lee, Sang-Min
    • Korean Membrane Journal
    • /
    • 제11권1호
    • /
    • pp.21-28
    • /
    • 2009
  • We investigated the effect of organic materials on membrane fouling in advanced drinking water treatment by a hybrid module packed with granular activated carbon (GAC) outside multi-channel ceramic microfiltration membrane. Synthetic water was prepared with humic acid and kaolin to simulate natural water resouces consisting of natural organic matter and inorganic particles. Kaolin concentration was fixed at 30 mg/L and humic acid was changed as 2~10 mg/L to inspect the effect of organic matters. Periodic back-flushing using permeate water was performed for 10 sec per filtration of 10 min. As a result, both resistance of membrane fouling (Rf) and permeate flux (J) were influenced highly by concentration of humic acid. It proved that NOM like humic acid could be an important factor on membrane fouling in drinking water treatment. Turbidity and UV254 absorbance were removed up to above 97.4% and 59.2% respectively.

Addition of a Worm Leachate as Source of Humic Substances in the Drinking Water of Broiler Chickens

  • Gomez-Rosales, S.;Angeles, M. De L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권2호
    • /
    • pp.215-222
    • /
    • 2015
  • The objective of this research was to evaluate the growth performance, the apparent ileal digestibility of nitrogen and energy, the retention of nutrients and the apparent metabolizable energy corrected to zero nitrogen retention (AMEn) in broiler chickens supplemented with increasing doses of a worm leachate (WL) as a source of humic substances (HS) in the drinking water. In Exp. 1, 140 male broilers were penned individually and assigned to four WL levels (0%, 10%, 20%, and 30%) mixed in the drinking water from 21 to 49 days of age. Water was offered in plastic bottles tied to the cage. In Exp. 2, 600 male broilers from 21 to 49 days of age housed in floor pens were assigned to three levels of WL (0%, 10%, and 20%) mixed in the drinking water. The WL was mixed with tap water in plastic containers connected by plastic tubing to bell drinkers. The results of both experiments were subjected to analysis of variance and polynomial contrasts. In Exp. 1, the daily water consumption was similar among treatments but the consumption of humic, fulvic, and total humic acids increased linearly (p<0.01) as the WL increased in the drinking water. The feed conversion (p<0.01) and the ileal digestibility of energy, the excretion of dry matter and energy, the retention of dry matter, ash and nitrogen and the AMEn showed quadratic responses (p<0.05) relative to the WL levels in drinking water. In Exp. 2, the increasing level of WL in the drinking water had quadratic effects on the final body weight, daily weight gain and feed conversion ratio (p<0.05). The addition of WL as a source of HS in the drinking water had beneficial effects on the growth performance, ileal digestibility of energy, the retention of nutrients as well on the AMEn in broiler chickens; the best results were observed when the WL was mixed at levels of 20% to 30% in the drinking water.

다양한 환경요인과 난분해성 유기물에 따른 고온산화 및 UV산화방식 총 유기탄소 산화율 변화 (Influences of Environmental Conditions and Refractory Organic Matters on Organic Carbon Oxidation Rates Measured by a High Temperature Combustion and a UV-sulfate Methods)

  • 정헌재;이보미;이근헌;신현상;허진
    • 한국물환경학회지
    • /
    • 제32권1호
    • /
    • pp.98-107
    • /
    • 2016
  • This study examined the effects of environmental conditions and the presence of refractory organic matter on oxidation rates of total organic carbon (TOC) measurements based on high temperature combustion and ultraviolet-sulfate methods. Spectroscopic indices for prediction of oxidation rates were also explored using the UV spectra and fluorescence excitation-emission matrix (EEM) of humic acids. Furthermore, optimum TOC instrument conditions were suggested by comparing oxidation rates of a standard TOC material under various conditions. Environmental conditions included salts, reduced ions, and suspended solids. Salts had the greatest influence on oxidation rates in the UV-sulfate method. However, no effect was detected in the high temperature combustion method. The UV-sulfate method showed lower humic substance oxidation rates, refractory natural organic matter, compared to the other methods. TOC oxidation rates for the UV-sulfate method were negatively correlated with higher specific-UV absorbance, humification index, and humic-like EEM peak intensities, suggesting that these spectroscopic indices could be used to predict TOC oxidation rates. TOC signals from instruments using the UV-sulfate method increased with increasing chamber temperature and increasing UV exposure durations. Signals were more sensitive to the former condition, suggesting that chamber temperature is important for improving the TOC oxidation rates of refractory organic matter.

금강 수계 자연유기물 특성 분석 (Analysis of Natural Organic Matter (NOM) Characteristics in the Geum River)

  • 유순주;김창수;하성룡;황종연;채민희
    • 한국물환경학회지
    • /
    • 제21권2호
    • /
    • pp.125-131
    • /
    • 2005
  • Natural organic matter(NOM) is defined as the complex matrix of organic material and abundant in natural waters. It affects the performance of unit operations for water purification. Several kinds of analytical indicators such as DOC, specific ultraviolet absorbance(SUVA), apparent molecular weight (AMW), fractionation and high performance size exclusive chromatography(HPSEC) have been used to understand characteristics and variations of NOM. This study aims to evaluate the characteristics of NOM in the Geum River system comprising with stream flows and reservoirs. It was identified that SUVA denoting the portion of humic substance in water ranged within 1.60~3.36. Using resin adsorbents, dissolved organic carbon(DOC) was fractionated into three classes: hydrophobic bases(HOB), hydrophobic acids(HOA) and hydrophilic substances(HI). HI dominates in all samples, collectively accounting for more than 62% of the DOC. HOA was the second dominated fraction and it varied considerably but accounted for about 30% of the DOC. The distribution of high molecular weight(HMW) measured by HPSEC being used to determine the molecular weight distribution of aquatic humic substances was 40.1% and 38.7% in reservoir and stream flow, respectively. The distribution of low molecular weight(LMW) in stream flow was 13.2% higher than that in reservoir. And apparent molecular weight less than 1KDa, which include the molecular weight of hydrophilic organic matter, occupied with 69.2% and 68.2% in stream flow and reservoir, respectively. While the molecular weight of 1 to 100 KDa including humic substances ranged with 18.6% and 21.6% in stream flow and reservoir, respectively. Seasonal variation of refractory dissolved organic carbon was similar to that of SUVA.

Growth Response to Acid Rain, Mg Deficiency and Al Surplus, and Amelioration of Al Toxicity by Humic Substances in Pitch Pine Seedlings

  • Joon-Ho Kim
    • Journal of Plant Biology
    • /
    • 제37권3호
    • /
    • pp.301-308
    • /
    • 1994
  • The individual and combined effects of acidic rain, Mg deficiency (-Mg) and Al surplus (+Al) on the growth of shoots and roots of pitch pine seedlings and the effect of humic substances (Lit) on Al toxicity were investigated. The growth of height and dry matter were not significantly less for pitch pine seedlings sprayed with simulated acid rain (SAR) of pH 3.5 than for those sprayed with SAR of pH 5.6. But treatments of Al and +Al-Mg in soil solution reduced the growth of seedlings in terms of height of shoots, and dry matter of shoots or roots. Effect of Mg deficiency on the growth of seedlings was apparent only when Al was treated simutaneously. The growth of seedlings, regardless of rain pH, decreased in the following order: control=-Mg>Lit+Al>+Al>+Al-Mg. Treatments of Al and +Al-Mg in soil solution reduced the total length of secondary and teritary roots of seedlings regardless of rain pH, and decreased in the following order: the primary root

  • PDF

고농도 유류와 중금속으로 복합 오염된 토양에서 식물성장에 미치는 부식산의 영향 (Effects of Humic Acids on Growth of Herbaceous Plants in Soil Contaminated with High Concentration of Petroleum Hydrocarbons and Heavy Metals)

  • 김기섭;성기준
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제16권1호
    • /
    • pp.51-61
    • /
    • 2011
  • Germination tests were conducted to determine the practical concentration levels at which plants can reproduce naturally during the phytoremediation of soils contaminated with a high concentration of petroleum hydrocarbons and heavy metals. The effects of humic acids on plant growth and soil physicochemical properties were also investigated. The results show that phytoremediation can be applied in soils contaminated by multiple contaminants at the former soil contamination potential level of Korean soil quality standards considering successful natural reproduction. It was observed that germination rates of Helianthus annuus and Festuca arundinacea were high after all treatments, and transplantation was more appropriate for Phragmites communis in phytoremediation. Humic acids had a positive effect on the growth of both aboveground and belowground biomass of herbaceous plants. Growth inhibition by multiple contaminants is more severe in the case of aboveground biomass. Germination and growth tests suggest that Helianthus annuus is a suitable phytoremediation plant for soils contaminated with a high concentration of petroleum hydrocarbons and heavy metals. The addition of humic acids also caused changes in the physicochemical properties of contaminated soils. An increase in the carbon and nitrogen content due to the addition of humic acids and a correlation between cation exchange capacity(CEC) and the organic matter content were observed.

Performances of submerged membrane photocatalysis reactor during treatment of humic substances

  • Halim, Ronald;Utama, Robert;Cox, Shane;Le-Clech, Pierre
    • Membrane and Water Treatment
    • /
    • 제1권4호
    • /
    • pp.283-296
    • /
    • 2010
  • During the disinfection of potable water, humic substances present in the solution react with chlorine to form potential carcinogenic compounds. This study evaluates the feasibility of using a submerged membrane photocatalysis reactor (SMPR) process for treatment of humic substances through the characterization of both organic removal efficiency and membrane hydraulic performance. A simple SMPR was operated and led to the removal of up to 83% of the polluting humic matters. Temporal rates of organic removal and membrane fouling were found to decrease with filtration time. Using tighter membrane in the hybrid process resulted in not only higher organic removal, but also more significant membrane fouling. Under the experimental conditions tested, optimum $TiO_2$ concentration for humic removal was found to be 0.6 g/L, and increasing initial pollutant concentration expectedly resulted in a more substantial membrane fouling. The importance of the influent nature and pollutant characteristics in this type of treatment was also assessed as various water sources were tested (model humic acid solution vs. local water containing natural organic matters). Results from this study revealed the promising nature of the SMPR process as an alternative technique for organic removal in the existing water treatment system.

낙동강 하류 수역에서 분자량 크기 및 형광특성을 고려한 용존유기물질 특성 (Characteristics of Dissolved Organic Matter(DOM) Based on Molecular Weight Fractions and Fluorescence Properties in the Downstream Nakdong River)

  • 지화성;김미희;이유정;손희종
    • 한국물환경학회지
    • /
    • 제36권3호
    • /
    • pp.194-205
    • /
    • 2020
  • The characteristics and behavior of dissolved organic matter (DOM) were determined by analyzing the molecular weight fractions and fluorescence properties of water samples in the downstream Nakdong River. Biogeochemical water quality parameters and fluorescent dissolved organic matter (FDOM) were analyzed at five sampling points in the downstream area of the Nakdong River January-August 2019. The molecular weight fractions of the DOM were separated by the Liquid Chromatography-Organic Carbon Detection (LC-OCD). The DOM predominantly comprised humic substances, followed by the building blocks, low molecular weight neutrals and biopolymers. The hydrophobic (aromatic) and hydrophilic properties were shown as coexisting, as most of the SUVA254nm values were under four. The FDOM was characterized as humic-like (FDOMH) with allochthonous origin and protein-like (FDOMP) with autochthonous origin; the FDOMH with autochthonous origin was also identified. The FDOMH relies on the aromaticity of the allochthonous organic matter and increases during summer. The FDOMH and FDOMP, which depend on the biodegradable dissolved organic matter from phytoplankton, were highly fluorescent in winter. The allochthonous organic matter was the dominant factor contributing to the behavior of the DOM, externally introduced to the river by rainfall. The FDOM only minimally contributed to the behavior of the DOM. It can be explained as the seasonal characteristics of the DOM, varied by the source of the organic matter.