• Title/Summary/Keyword: Human-bio sensor

Search Result 64, Processing Time 0.032 seconds

Development of a transcutaneous system for implantable bio-signal measurement (생체신호계측을 위한 체내 이식형 무선송수신 시스템 개발)

  • Lee, Seung-Ha
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.23-28
    • /
    • 2008
  • In order to measure bio-signals, it is desirable to build a fully implantable system which connects directly to neural pathways or body tissue. A design scheme for fully implementable measurement system is proposed in this paper. Consisting of an implanted module and an external system, the proposed scheme delivers power and data between the two modules. The external module sends power via inductive link using a simple H-bridge type oscillator. Also, the implanted module sends measured data to the external system utilizing R/F communication technique at a frequency of ISM band. A stable communication and operation is achieved as the two types of channels are separated. Implemented in a compact size enough to be implanted in human body, the system exhibits good performance in experimental studies.

The Role of DNA Binding Domain in hHSF1 through Redox State (산화환원에 따른 hHSF1의 DNA binding domain의 역할)

  • Kim, Sol;Hwang, Yun-Jeong;Kim, Hee-Eun;Lu, Ming;Kim, An-D-Re;Moon, Ji-Young;Kang, Ho-Sung;Park, Jang-Su
    • Journal of Life Science
    • /
    • v.16 no.6
    • /
    • pp.1052-1059
    • /
    • 2006
  • The heat shock response is induced by environmental stress, pathophysiological state and non-stress conditions and wide spread from bacteria to human. Although translations of most proteins are stopped under a heat shock response, heat shock proteins (HSPs) are produced to protect cell from stress. When heat shock response is induced, conformation of HSF1 was changed from monomer to trimer and HSF1 specifically binds to DNA, which was called a heat shock element(HSE) within the promoter of the heat shock genes. Human HSF1(hHSFl) contains five cysteine(Cys) residues. A thiol group(R-SH) of Cys is a strong nucleophile, the most readily oxidized and nitrosylated in amino acid chain. This consideration suggests that Cys residues may regulate the change of conformation and the activity of hHSF1 through a redox-dependent thiol/disulfide exchange reaction. We want to construct role of five Cys residues of hHSF by redox reagents. According to two studies, Cys residues are related to trimer formation of hHSF1. In this study, we want to demonstrate the correlation between structural change and DNA-binding activity of HSF1 through forming disulfide bond and trimerization. In this results, we could deduce that DNA binding activity of DNA binding domain wasn't affected by redox for always expose outside to easily bind to DNA. DNA binding activity of wild-type HSF's DNA binding domain was affected by conformational change, as conformational structure change (trimerization) caused DNA binding domain.

Direct treatment on live and cancer cells & process innovation of bio-sensor using atmospheric pressure plasma system with low-temperature arc-free unit

  • Lee, Keun-Ho;Lee, Hae-Ryong;Jun, Seung-Ik;Bahn, Jae-Hoon;Baek, Seung-J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.43-43
    • /
    • 2010
  • We have characterized the parametric and functional properties of live cell and cancer cell according to plasma treatment conditions using Atmospheric Pressure (AP) Plasma with uniquely designed low temperature arc-free unit. AP plasma system showed very highly efficient capabilities of reacting and interfacing directly with live and cancer cells. The parametric results with the types of gases, applied power, applied gap, and process times on cells will be presented in accordance with functional studies of the works. The growth of cancer cells is directly influenced by AP plasma exposure with evaluating plasma conditions in several human cancer cells and understanding how plasma exposure alters molecular signaling pathways. The cells exhibit a slower or faster growth rates compared with untreated cells, depending on the cell types. These results strongly support the conclusion that alterations in one or more of each gene are responsible, at least in part, for plasma-induced apoptosis in cancer cells. In addition, it also will be presented that AP plasma has an important role for the improvement of sensor performance due to excellent interface property between enzyme and metal electrode for bio sensor manufacturing process.

  • PDF

Bio-functionalization of the Single Layer Graphene for Detecting the Cancer Cell

  • Oh, Hyung Sik;Park, Wanjun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.429.1-429.1
    • /
    • 2014
  • We present a method of surface functionalization of a single layer graphene for linking and detecting MDA-MB-231 human breast cancer cell. The methodology is done by utilizing 1-pyrenebutanoic acid and succinimidyl ester for immobiling CD44 antibodies. This work shows that the single layer graphene is an efficient fixing substance to capture the MDA-MB-231 human breast cancer cell, selectively. The immobilization method of the cancer cell on the graphene layer will be an effective cell counting system. Moreover usage of the linking with non-covalent bonding is expected to develope a sensor scheme of electrical cell-detecting diagnosis system.

  • PDF

A MEMS/NEMS sensor for human skin temperature measurement

  • Leng, Hongjie;Lin, Yingzi
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.53-67
    • /
    • 2011
  • Human state in human-machine systems highly affects the overall system performance, and should be detected and monitored. Physiological cues are essential indicators of human state and useful for the purpose of monitoring. The study presented in this paper was focused on developing a bio-inspired sensing system, i.e., Nano-Skin, to non-intrusively measure physiological cues on human-machine contact surfaces to detect human state. The paper is presented in three parts. The first part is to analyze the relationship between human state and physiological cues, and to introduce the conceptual design of Nano-Skin. Generally, heart rate, skin conductance, skin temperature, operating force, blood alcohol concentration, sweat rate, and electromyography are closely related with human state. They can be measured through human-machine contact surfaces using Nano-Skin. The second part is to discuss the technologies for skin temperature measurement. The third part is to introduce the design and manufacture of the Nano-Skin for skin temperature measurement. Experiments were performed to verify the performance of the Nano-Skin in temperature measurement. Overall, the study concludes that Nano-Skin is a promising product for measuring physiological cues on human-machine contact surfaces to detect human state.

A Bio-inspired Hybrid Cross-Layer Routing Protocol for Energy Preservation in WSN-Assisted IoT

  • Tandon, Aditya;Kumar, Pramod;Rishiwal, Vinay;Yadav, Mano;Yadav, Preeti
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1317-1341
    • /
    • 2021
  • Nowadays, the Internet of Things (IoT) is adopted to enable effective and smooth communication among different networks. In some specific application, the Wireless Sensor Networks (WSN) are used in IoT to gather peculiar data without the interaction of human. The WSNs are self-organizing in nature, so it mostly prefer multi-hop data forwarding. Thus to achieve better communication, a cross-layer routing strategy is preferred. In the cross-layer routing strategy, the routing processed through three layers such as transport, data link, and physical layer. Even though effective communication achieved via a cross-layer routing strategy, energy is another constraint in WSN assisted IoT. Cluster-based communication is one of the most used strategies for effectively preserving energy in WSN routing. This paper proposes a Bio-inspired cross-layer routing (BiHCLR) protocol to achieve effective and energy preserving routing in WSN assisted IoT. Initially, the deployed sensor nodes are arranged in the form of a grid as per the grid-based routing strategy. Then to enable energy preservation in BiHCLR, the fuzzy logic approach is executed to select the Cluster Head (CH) for every cell of the grid. Then a hybrid bio-inspired algorithm is used to select the routing path. The hybrid algorithm combines moth search and Salp Swarm optimization techniques. The performance of the proposed BiHCLR is evaluated based on the Quality of Service (QoS) analysis in terms of Packet loss, error bit rate, transmission delay, lifetime of network, buffer occupancy and throughput. Then these performances are validated based on comparison with conventional routing strategies like Fuzzy-rule-based Energy Efficient Clustering and Immune-Inspired Routing (FEEC-IIR), Neuro-Fuzzy- Emperor Penguin Optimization (NF-EPO), Fuzzy Reinforcement Learning-based Data Gathering (FRLDG) and Hierarchical Energy Efficient Data gathering (HEED). Ultimately the performance of the proposed BiHCLR outperforms all other conventional techniques.

Sensor-based Recognition of Human's Hand Motion for Control of a Robotic Hand (로봇 핸드 제어를 위한 센서 기반 손 동작 인식)

  • Hwang, Myun Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5440-5445
    • /
    • 2014
  • Many studies have examined robot control using human bio signals but complicated signal processing and expensive hardware are necessary. This study proposes a method to recognize a human's hand motion using a low-cost EMG sensor and Flex sensor. The method to classify movement of the hand and finger is determined from the change in output voltage measured through MCU. The analog reference voltage is determined to be 3.3V to increase the resolution of movement identification through experiment. The robotic hand is designed to realize the identified movement. The hand has four fingers and a wrist that are controlled using pneumatic cylinders and a DC servo motor, respectively. The results show that the proposed simple method can realize human hand motion in a remote environment using the fabricated robotic hand.

IoT based Smart Health Service using Motion Recognition for Human UX/UI (모션인식을 활용한 Human UI/UX를 위한 IoT 기반 스마트 헬스 서비스)

  • Park, Sang-Joo;Park, Roy C.
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.18 no.1
    • /
    • pp.6-12
    • /
    • 2017
  • In this paper, we proposed IoT based Smart Health Service using Motion Recognition for Human UX/UI. Until now, sensor networks using M2M-based u-healthcare are using non-IP protocol instead of TCP / IP protocol. However, in order to increase the service utilization and facilitate the management of the IoT-based sensor network, many sensors are required to be connected to the Internet. Therefore, IoT-based smart health service is designed considering network mobility because it is necessary to communicate not only the data measured by sensors but also the Internet. In addition, IoT-based smart health service developed smart health service for motion detection as well as bio information unlike existing healthcare platform. WBAN communications used in u-healthcare typically consist of many networked devices and gateways. The method proposed in this paper can easily cope with dynamic changes even in a wireless environment by using a technology supporting mobility between WBAN sensor nodes, and systematic management is performed through detection of a user's motion.

  • PDF

Development of Personalized Exercise Prescription System based on Kinect Sensor (Kinect Sensor 기반의 개인 맞춤형 운동 처방 시스템 개발)

  • Woo, Hyun-Ji;Yu, Mi;Hong, Chul-Un;Kwon, Tae-Kyu
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.3
    • /
    • pp.593-605
    • /
    • 2022
  • The purpose of this study is to investigate the personalized treacmill exercise analysis using a smart mirror based on Kinect sensor. To evaluate the performance of the development system, 10 health males were used to measure the range of the hip joint, knee joint, and ankle joint using a smart mirror when walking on a treadmill. For the validity and reliability of the development system, the validity and reliability were analyzed by comparing the human movement data measured by the Kinect sensor with the human movement data measured by the infrared motion capture device. As a result of validity verification, the correlation coefficient r=0.871~0.919 showed a high positive correlation, and through linear regression analysis, the validity of the smart mirror system was 88%. Reliability verification was conducted by ICC analysis. As a result of reliability verification, the correlation coefficient r=0.743~0.916 showed high correlation between subjects, and the consistency for repeated measurement was also very high at ICC=0.937. In conclusion, despite the disadvantage that Kinect sensor is less accurate than the motion capture system, Kinect is it has the advantage of low price and real-time information feedback. This means that the Kinect sensor is likely to be used as a tool for evaluating exercise prescription through human motion measurement and analysis.

Bio-inspired self powered nervous system for civil structures

  • Shoureshi, Rahmat A.;Lim, Sun W.
    • Smart Structures and Systems
    • /
    • v.5 no.2
    • /
    • pp.139-152
    • /
    • 2009
  • Globally, civil infrastructures are deteriorating at an alarming rate caused by overuse, overloading, aging, damage or failure due to natural or man-made hazards. With such a vast network of deteriorating infrastructure, there is a growing interest in continuous monitoring technologies. In order to provide a true distributed sensor and control system for civil structures, we are developing a Structural Nervous System that mimics key attributes of a human nervous system. This nervous system is made up of building blocks that are designed based on mechanoreceptors as a fundamentally new approach for the development of a structural health monitoring and diagnostic system that utilizes the recently developed piezo-fibers capable of sensing and actuation. In particular, our research has been focused on producing a sensory nervous system for civil structures by using piezo-fibers as sensory receptors, nerve fibers, neuronal pools, and spinocervical tract to the nodal and central processing units. This paper presents up to date results of our research, including the design and analysis of the structural nervous system.