• Title/Summary/Keyword: Human-Error and Human -Error Control

Search Result 281, Processing Time 0.032 seconds

An Experimental Evaluation on Human Error Hazards of Task using Digital Device (디지털 기기 기반 직무 수행 시 인적오류위험성에 대한 실험적 평가)

  • Oh, Yeon Ju;Jang, Tong Il;Lee, Yong Hee
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.1
    • /
    • pp.47-53
    • /
    • 2014
  • The application of advanced Main Control Room(MCR) is accompanied with lots of changes and different forms and features through the virtue of new digital technologies. The characteristics of these digital technologies and devices give many opportunities to the interface management, and can be integrated into a compact single workstation in advanced MCR so that workers can operate the plant with minimum physical burden under any operation conditions. However, these devices may introduce new types of human errors and thus a means to evaluate and prevent such errors is needed, especially those related to characteristics of digital devices. This paper reviewed the new type of human error hazards of tasks based on digital devices and surveyed researches on physiological assessment related to human error. An experiment was performed to verify human error hazards by physiological responses such as EEG which was measured to evaluate the cognitive workload of operators. And also, the performances of four tasks which are representative in human error hazard tasks based on digital devices were compared. Response time, ${\beta}$ power spectrum rate of each task by EEG, and mental workload by NASA-TLX were evaluated. In the results of the experiment, the rate of the ${\beta}$ power was increased in the task 1 and task 4 which are searching and navigating task and memory task of hierarchical information, respectively. In case of the mental workload, in most of evaluation items, task 1 and 4 were highly rated comparatively. In this paper, human error hazards might be identified by highly cognitive workload. Conclusively, it was concluded that the predictive method which is utilized in this paper and an experimental verification can be used to ensure the safety when applying the digital devices in Nuclear Power Plants (NPPs).

A Study on Countermeasure Strategy on Risk of Human Errors driven by Advanced and Automated Systems Through Consideration of Related Theories (현대의 고도화, 자동화된 시스템이 파생한 휴먼에러에 관한 이론적 고찰을 통한 리스크 대응전략 설정)

  • Shin, In Jae
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.1
    • /
    • pp.86-92
    • /
    • 2014
  • This paper provides an integrated view on human and system interaction in advanced and automated systems, which adopting computerized multi-functional artifacts and complicated organizations, such as nuclear power plants, chemical plants, steel and semi-conduct manufacturing system. As current systems have advanced with various automated equipments but human operators from various organizations are involved in the systems, system safety still remains uncertain. Especially, a human operator plays an important role at the time of critical conditions that can lead to catastrophic accidents. The knowledge on human error helps a risk manager as well as a designer to create and control a more credible system. Several human error theories were reviewed and adopted for forming the integrated perspective: gulf of execution and evaluation; risk homeostasis; the ironies of automation; trust in automation; design affordance; distributed cognition; situation awareness; and plan delegation theory. The integrated perspective embraces human error theories within three levels of human-system interactions such as affordance level, psychological logic level and trust level. This paper argued that risk management process should dealt with human errors by providing (1) reasoning improvement; (2) support to situation awareness of operators; and (3) continuous monitoring on harmonization of human system interaction. This approach may help people to understand risk of human-system interaction failure characteristics and their countermeasures.

A Study on the Cause Analysis of Human Error Accidents by Railway Job

  • Byeoung-Soo YUM;Tae-Yoon KIM;Sun-Haeng CHOI;Won-Mo GAL
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.7 no.1
    • /
    • pp.27-33
    • /
    • 2024
  • Purpose: This study investigates human error accidents in the Korean railway sector, emphasizing the need for systematic management to prevent such incidents, which can have fatal consequences, especially in driving-related jobs. Research design, data and methodology: This paper analyzed data from the Aviation and Railway Accident Investigation Board and the Korea Transportation Safety Authority, examining 240 human error accidents that occurred over the last five years (2018-2022). The analysis focused on accidents in the driving, facility, electric, and control fields. Results: The findings indicate that the majority of human error accidents stem from negligence in confirmation checks, issues with work methods, and oversight in facility maintenance. In the driving field, errors such as signal check neglect and braking failures are prevalent, while in the facility and electric fields, the main issues are maintenance delays and neglect of safety measures. Conclusions: The paper concludes that human error accidents are complex and multifaceted, often resulting from a high workload on engineers and systemic issues within the railway system. Future research should delve into the causal relationships of these accidents and develop targeted prevention strategies through improved work processes, education, and training.

Short-Term Human Factors Engineering Measures for Minimizing Human Error in Nuclear Power Facilities (원자력 시설에서의 인적 오류 발생 최소화를 위한 인간공학적 단기대책수립에 관한 연구)

  • Lee, Dhong-Hoon;Byun, Seong-Nam;Lee, Yong-Hee
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.121-125
    • /
    • 2007
  • The objective of this study is to develop short-term prevention measures for minimizing possible human error in nuclear power facilities. To accomplish this objective, a group of subject matter experts (SMEs) were formed, which is consisting of those from regulatory bodies, academia, industries and research institutes. Prevention measures were established for urgent execution in nuclear power facilities on a short-term basis. This study suggests short-term measures for reducing human error on three different areas; (1) strengthening worker management, (2) enhancing workplace environments and working methods, and (3) improving the technologies regulating human factors. Under the leadership of the Ministry of Science and Technology, these short-term measures will be pursued and implemented systematically by utility and regulatory agencies. The details of prevention measures are presented and discussed.

Human Error Analysis in a Permit to Work System: A Case Study in a Chemical Plant

  • Jahangiri, Mehdi;Hoboubi, Naser;Rostamabadi, Akbar;Keshavarzi, Sareh;Hosseini, Ali Akbar
    • Safety and Health at Work
    • /
    • v.7 no.1
    • /
    • pp.6-11
    • /
    • 2016
  • Background: A permit to work (PTW) is a formal written system to control certain types of work which are identified as potentially hazardous. However, human error in PTW processes can lead to an accident. Methods: This cross-sectional, descriptive study was conducted to estimate the probability of human errors in PTWprocesses in a chemical plant in Iran. In the first stage, through interviewing the personnel and studying the procedure in the plant, the PTW process was analyzed using the hierarchical task analysis technique. In doing so, PTWwas considered as a goal and detailed tasks to achieve the goal were analyzed. In the next step, the standardized plant analysis risk-human (SPAR-H) reliability analysis method was applied for estimation of human error probability. Results: The mean probability of human error in the PTW system was estimated to be 0.11. The highest probability of human error in the PTW process was related to flammable gas testing (50.7%). Conclusion: The SPAR-H method applied in this study could analyze and quantify the potential human errors and extract the required measures for reducing the error probabilities in PTW system. Some suggestions to reduce the likelihood of errors, especially in the field of modifying the performance shaping factors and dependencies among tasks are provided.

Varying skill prameter based on error signal and its effect

  • Hidaka, Koichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1741-1744
    • /
    • 2005
  • In this paper, we proposed an adaptive skill element based on error signal. We assume that human progress their skills of actions based on errors, then an inverse dynamic of human motion have to changes. Human controller consists from feedback element (FB) and feed forward element (FF) and their elements cooperate to control actions. Under the assumption, we vary the connection of FF and FB by error signal. We propose the index function for change of a skill parameter. From results of the numerical simulations for the varying skill parameter with index function, we consider that the position error given by our vision changes the skill element and we confirm that the position error is the one of the estimate function for the improvement in our skill.

  • PDF

A Case Study on the Human Error Analysis for the Prevention of Converter Furnace Accidents (전로사고 예방을 위한 인적오류 분석)

  • Shin, Woonchul;Kwon, Jun Hyuk;Park, Jae Hee
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.3
    • /
    • pp.195-200
    • /
    • 2014
  • Occupational fatal injury rate per 10,000 population of Korea is still higher among the OECD member countries. To prevent fatal injuries, the causes of accidents including human error should be analyzed and then appropriate countermeasures should be established. There was an severe converter furnace accident resulting in five people death by chocking in 2013. Although the accident type of the furnace accident was suffocation, many safety problems were included before reaching the death of suffocation. If the safety problems are reviewed throughly, the alternative measures based on the review would be very useful in preventing similar accidents. In this study, we investigated the converter furnace accident by using human error analysis and accident scenario analysis. As a result, it was found that the accident was caused by some human errors, inappropriate task sequence and lack of control in coordinating work by several subordinating companies. From the review of this case, the followings are suggested: First, systematic human error analysis should be included in the investigation of fatal injury accidents. Second, multi man-machine accident scenario analyis is useful in most of coordinating work. Third, the more provision of information on system state will lessen human errors. Fourth, the coordinating control in safety should be performed in the work conducting by several different companies.

Development and Validation of A Finite Optimal Preview Control-based Human Driver Steering Model (최적예견 제어 기법을 이용한 운전자 조향 모델의 개발 및 검증)

  • Kang, Ju-Yong;Yi, Kyong-Su;Noh, Ki-Han
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.855-860
    • /
    • 2007
  • This paper describes a human driver model developed based on finite preview optimal control method. The human driver steering model is constructed to minimize a performance index which is a quadratic form of lateral position error, yaw angle error and steering input. Simulation studies are conducted using a vehicle simulation software, Carsim. The Carsim vehicle model is validated using vehicle test data. In order to validate the human driving steering model, the human driver steering model is compared to the driving data on a virtual test track(VTT) and the actual vehicle test data. It is shown that human driver steering behaviors can be well represented by the human driver steering model presented in this paper

  • PDF

Fuzzy-Neural Modeling of a Human Operator Control System (인간 운용자 제어시스템의 퍼지-뉴럴 모델링)

  • Lee, Seok-Jae;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.474-480
    • /
    • 2007
  • This paper presents an application of intelligent modeling method to manual control system with human operator. Human operator as a part of controller is difficult to be modeled because of changes in individual characteristics and operation environment. So in these situation, a fuzzy model developed relying on the expert's experiences or trial and error may not be acceptable. To supplement the fuzzy model block, a neural network based modeling error compensator is incorporated. The feasibility of the present fuzzy-neural modeling scheme has been investigated for the real human based target tracking system.

The NURBS Human Body Modeling Using Local Knot Removal

  • Jo, Joon-Woo;Han, Sung-Soo
    • Fibers and Polymers
    • /
    • v.6 no.4
    • /
    • pp.348-354
    • /
    • 2005
  • These days consumers' various demands are accelerating research on apparel manufacturing system including automatic measurement, pattern generation, and clothing simulation. Accordingly, methods of reconstructing human body from point-clouds measured using a three dimensional scanning device are required for apparel CAD system to support these functions. In particular, we present in this study a human body reconstruction method focused on two issues, which are the decision of the number of control point for each sectional curve with error bound and the local knot removal for reducing the unusual concentration of control points. The approximation of sectional curves with error bounds as an approximation criterion leads all sectional curves to their own particular shapes apart from the number of control points. In addition, the application of the local knot removal to construction of human body sectional curves reduces the unusual concentration of control points effectively. The results may be used to produce an apparel CAD system as an automatic pattern generation system and a clothing simulation system through the low level control of NUBS or NURBS.