• Title/Summary/Keyword: Human visual system (HVS)

Search Result 151, Processing Time 0.026 seconds

Blind Watermarking Using HVS and Wavelet Transform (HVS 모델과 웨이블릿 변환을 이용한 블라인드 워터마킹)

  • 주상현;이선화
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11C
    • /
    • pp.1169-1176
    • /
    • 2003
  • In this paper, we propose a blind watermarking that embeds watermarks into wavelet middle frequency subbands using human visual system. Wavelet middle frequency pairs(MFP) show similar distortion against general image processing attacks such as compression and filtering. So the quantization between MFPs is more robust than conventional methods that directly quantize DWT coefficients. We use a noise visibility function(NVF) to obtain a good visual quality This is able to preserve embedding positions after many attacks. Our experimental results show that the proposed scheme is robust to various image processing such as JPEG, while preserving good visual quality above 44㏈.

Image Enhancement Using Human Visual Perception (인간 시각의 인지 특성을 이용한 영상 화질 향상 방법)

  • Bang, Seangbae;Kim, Wonha
    • Journal of Broadcast Engineering
    • /
    • v.23 no.2
    • /
    • pp.206-217
    • /
    • 2018
  • We develop the signal processing method for adaptive implementing direction of signal and the frequency sensitivity of human visual system(HVS). Existing multiband energy scaling method makes ringing artifact because it does not consider signal direction. To solve this problem, we use block gradient for signal direction in addition to existing method. And we use the fact that frequency component of signal is more sensitive than value of signal over human eyes. we enhance the signal according to contrast sensitivity function(CSF) which is the model of frequency sensitivity of human eye. Compared that the existing analysis models only improve the efficiencies in the existing systems, the developed method can process the image signals to be more desirable and suitable to HVS.

An Adaptive Block Truncation Coding Using Human Visual System (인간시각 체계를 이용한 적응 구획 절단 부호화)

  • 신용달;이봉락;이건일
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.12
    • /
    • pp.67-72
    • /
    • 1993
  • An adaptive block truncation coding(BTC) using human visual system(HVS) is proposed. To reduce visible blocking effect at sensitive area in HVS. a new category classification coefficient is proposed. The categroy classification coefficient was derived by combining the modified HVS and standard deviation. By computer simulations, we showed that the proposed method reduced blocking effect at low bit rate coding more than the conventional Hui's method.

  • PDF

Human Visual System based Automatic Underwater Image Enhancement in NSCT domain

  • Zhou, Yan;Li, Qingwu;Huo, Guanying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.837-856
    • /
    • 2016
  • Underwater image enhancement has received considerable attention in last decades, due to the nature of poor visibility and low contrast of underwater images. In this paper, we propose a new automatic underwater image enhancement algorithm, which combines nonsubsampled contourlet transform (NSCT) domain enhancement techniques with the mechanism of the human visual system (HVS). We apply the multiscale retinex algorithm based on the HVS into NSCT domain in order to eliminate the non-uniform illumination, and adopt the threshold denoising technique to suppress underwater noise. Our proposed algorithm incorporates the luminance masking and contrast masking characteristics of the HVS into NSCT domain to yield the new HVS-based NSCT. Moreover, we define two nonlinear mapping functions. The first one is used to manipulate the HVS-based NSCT contrast coefficients to enhance the edges. The second one is a gain function which modifies the lowpass subband coefficients to adjust the global dynamic range. As a result, our algorithm can achieve contrast enhancement, image denoising and edge sharpening automatically and simultaneously. Experimental results illustrate that our proposed algorithm has better enhancement performance than state-of-the-art algorithms both in subjective evaluation and quantitative assessment. In addition, our algorithm can automatically achieve underwater image enhancement without any parameter tuning.

Image Enhancement Using The Contrast Sensitivity Function (Contrast Sensitivity 함수를 이용한 영상화질 개선 방법)

  • Bang, Seangbae;Kim, Wonha
    • Journal of Broadcast Engineering
    • /
    • v.20 no.2
    • /
    • pp.238-247
    • /
    • 2015
  • We develop the signal processing method for adaptive implementing direction of signal and the frequency sensitivity of human visual system(HVS). Existing multibnad energy scaling method makes ringing artifact because it does not consider signal direction. To solve this problem, we use block gradient for signal direction in addition to existing method. And we use the fact that frequency component of signal is more sensitive than value of signal over human eyes. we enhance the signal according to contrast sensitivity function(CSF) which is the model of frequency sensitivity of human eye. Compared that the existing analysis models only improve the efficiencies in the existing systems, the developed method can process the image signals to be more desirable and suitable to HVS.

Defect Detection Method using Human Visual System and MMTF (MMTF와 인간지각 특성을 이용한 결함성분 추출기법)

  • Huh, Kyung-Moo;Joo, Young-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1094-1098
    • /
    • 2013
  • AVI (Automatic Vision Inspection) systems automatically detect defect features and measure their sizes via camera vision. Defect detection is not an easy process because of noises from various sources and optical distortion. In this paper the acquired images from a TFT panel are enhanced with the adoption of an HVS (Human Visual System). A human visual system is more sensitive on the defect area than the illumination components because it has greater sensitivity to variations of intensity. In this paper we modified an MTF (Modulation Transfer Function) in the Wavelet domain and utilized the characteristics of an HVS. The proposed algorithm flattens the inner illumination components while preserving the defect information intact.

A ROBUST WATERMARKING METHOD BASED ON HVS (HVS 기반 워터마킹에서 외부 공격에 강인한 방법에 관한 연구)

  • 심상흔;정용주;강호경;노용만
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.73-76
    • /
    • 2001
  • In this paper, we utilize a HVS(Human Visual System) watermarking method where watermarks are embedded in a DFT domain. The HVS watermarking method is robust for attacks like JPEC, filtering, noise, etc. But, when images are attacked by basic geometric attacks as cropping, scaling, rotation, a watermarks may not be detected. In this paper, we introduce the HVS watermarking method that inserts references In a domain of LSB(Least Significant Bit) of image. Experimental results show that the proposed method based on HVS watermarking method gives more robustness to the basic geometric attacks compared with original HVS watermarking methods.

  • PDF

On Using the Human Visual System Model for Subband Coding (시각 시스템 모델을 이용한 Subband 코딩)

  • 박용철;김근숙;차일환;윤대희
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.6
    • /
    • pp.937-943
    • /
    • 1990
  • In this paper, a subband coding scheme using the human visual system(HVS) model for encoding monochrome images is proposed to produce perceptually higher quality images compared with the regular subband coding scheme. The proposed approach first transforms the intensity image to the density image by a point nonlinear transformation. A frequency band dexomposition of the density image is carried out by means of 2-D seaprable quadrature mirror filters, which split the density image spectrum into 16 equall rate subbands. Bits are allocated among the subbands to minimize the weighted mean squar error (WMSE) for differential pulse code modulation(DPCM) coding of the subbands. The weight for each subband is calculated from the modulation transfer function (MTF) of the HVS model at corresponding frequencies. The performances of the proposed approach are evaluated for 256 * 256 monochrome images at the bit rates of 0.5, 0.75 and 1.0 bita per pixel. Computer simulation results indicate that using the HVS model yields more pleasing reconstructed images than regular subband coding approach which does not use HVS model.

  • PDF

Color Image Quantization and Dithering Method based on HVS Characteristics

  • Ha, Yeong-Ho
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.569-574
    • /
    • 1999
  • New methods for both color palette design and dithering based on human visual system (HVS) characteristics are proposed. Color quantization for palette design uses the relative visual sensitivity and spatial masking effect of HVS. The dithering operation for printing uses nonlinear quantization, which considers the overlapping phenomena among neighbor printing dots, and then a modified dot-diffusion algorithm is followed to compensate the degradation produced in the quantization process. The proposed techniques can produce high quality image in the low-bit color devices.

  • PDF

Digital Watermarking using the suitable watermark strength and length (최적의 워터마크 강도와 길이를 이용한 디지털 워터마킹)

  • Lee, Young-Hee;Lee, Jung-Hee;Cha, Eui-Young
    • The Journal of Korean Association of Computer Education
    • /
    • v.9 no.5
    • /
    • pp.77-84
    • /
    • 2006
  • In this paper, we propose an adaptive image watermarking algorithm in DWT domain by using HVS(human Visual system) and SOM(Self-Organizing Map) among neural networks. HVS can be described in terms of two properties of HVS: brightness and texture sensitivity. The SOM is used to obtain the local characteristics of image, Therefore, the suitable strength and length of embedded watermark is determined by using HVS and SOM. The experimental results show that proposed method provides a suitable strength and length of watermark and has good perceptual invisibility and robustness for various attacks.

  • PDF