• Title/Summary/Keyword: Human umbilical vein endothelial cells

Search Result 240, Processing Time 0.031 seconds

Effect of Fibroblast Growth Factor-2 on Migration and Proteinases Secretion of Human Umbilical Vein Endothelial Cells

  • Oh, In-Suk;Kim, Hwan-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.379-384
    • /
    • 2004
  • Fibroblast growth factor-2 (FGF-2) is known to modulate numerous cellular functions in various cell types, including cell proliferation, differentiation, survival, adhesion, migration, and motility, and also in processes such as wound healing, angiogenesis, and vasculogenesis. FGF-2 regulates the expression of several molecules thought to mediate critical steps during angiogenesis. This study examines the mechanisms underlying FGF-2-induced cell migration, using human umbilical vein endothelial cells (HUVECs). FGF-2 induced the nondirectional and directional migration of endothelial cells, which are inhibited by MMPs and plasmin inhibitors, and induced the secretion of matrix metalloproteinase-3 (MMP3) and MMP-9, but not MMP-l and MMP-2. FGF-2 also induced the secretion of the tissue inhibitor of metalloproteinase-l (TIMP-I), but not of TIMP- 2. Also, the pan-PKC inhibitor inhibited FGF-2-induced MMP-9 secretion. It is, therefore, suggested that FGF-2 induces the migration of cultured endothelial cells by means of increased MMPs and plasmin secretion. Furthermore, FGF-2 may increase MMP-9 secretion by activating the PKC pathway.

Expression of Some Adhesion Molecules on the Cultured Endothelial Cells of Human Umbilical Vein Infected with Hantaan Virus (한탄바이러스 감염 내피세포에서 부착분자의 발현 (II) -In Situ Hybridization-)

  • Chung, Sang-In;Shin, Sung-Il;Kim, Ki-Jeong;Kang, Eung-Taek;Yu, Suk-Hee;Choi, Chul-Soon;Yang, Yong-Tae
    • The Journal of Korean Society of Virology
    • /
    • v.26 no.1
    • /
    • pp.47-58
    • /
    • 1996
  • Histopathological vascular changes in hemorrhagic fever with renal syndrome (HFRS) caused by Hantaan virus include increased vascular permeability, disseminated intravascular coagulation, thrombocytopenia and changes in coagulation activity. Although vascular endothelial cells of main target organs such as kidney infected with Hantaan virus are not damaged but swelling of endothelial cells, perivascular exudates and infiltration of mononuclear cells and fresh interstitial hemorrhages are common. However, the pathogenesis of cell infiltration and hemorrhages around vascular endothelial cells are not well understood. Some endothelial cell molecules or vascular adhesins that acts as adhesion moleulces for leukocyte are expressed on endothelial cells close to site of inflammation. However, whether the expression of endothelial adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule (ICAM-1) and endothelial leukocyte adhesion molecule (ELAM) on vascular endothelial cells are increased by infection with Hantaan virus has not been studied. In this study, the relationship between the expression of VCAM-1, ICAM-1 and ELAM and adhesion of mononuclear cells on endothelial cells of human blood vessels infected with Hantaan virus was investigated. The endothelial cells of umbilical vein was passaged three times in culture medium and the monolayered cells were infected with $10^5\;pfu/ml$ of Hantaan virus grown in Vera E6 cell cultures. The multiplication of virus in cultured endothelial cells was monitored by immunohistochemistry and the expression of adhesion molecules was demonstrated by immunohistochemistry using monoclonal antibodies against VCAM-1, ICAM-1 and ELAM. And in situ hybriditation against ICAM-1 was also performed. The endothelial adhesion molecules, VCAM and ICAM, were expressed after 6 hours postinfection, respectively, and their expressions lasted for 72 hours. Similar expression of VCAM and ICAM appeared on endothelial cells by infection with virus, but the expression of ELAM was not recognized up to 72 hours postinfection. Microscopically, it was noted that many monocuclear cells adhered on endothelial cells infected with viruses. In an electronmicroscopic study, the transendothelial migration of mononuclear cells was observed on monolayered endothelial cells infected with virus. This results suggested that the endothelial adhesion molecules, particulary VCAM and ICAM, might be expressed on endothelial cells by infection with Hantaan virus and these molecules play a key role in the adhesion and extravasation of inflammatory cells around blood vessels.

  • PDF

Hot water extract of Loliolus beka attenuates methylglyoxal-induced advanced glycation end products formation in human umbilical vein endothelial cells

  • Cha, Seon-Heui;Jun, Hee-Sook
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.10
    • /
    • pp.517-524
    • /
    • 2022
  • Over production of methylglyoxal (MGO) a highly reactive dicarbonyl compound, has been associated in progressive diabetes with vascular complication. Therefore, we investigated whether hot water extract of Loliolus beka meat (LBM-HWE) presents a preserve effect against MGO-induced cellular damage in human umbilical vein endothelial cells (HUVECs). The LBM-HWE extract showed to inhibit MGO-induced cytotoxicity. Additionally, the LBM-HWE reduced mRNA expression of pro-inflammatory cytokines, and reduced MGO-induced advanced glycation end product (AGEs) formation. Furthermore, LBM-HWE induced glyoxalase-1 mRNA expression and reduced MGO-induced carbonyl protein formation in HUVECs. The results implicate that LBM-HWE has protective ability against MGO-induced HUVECs toxicity by preventing AGEs formation. In conclusion, LBM-HWE could be used as a potential treatment material for the prevention of vascular complications of diabetes.

Basic Fibroblast Growth Factor(bFGF) Inhibits Radiation-induced Apoptosis on Human Umbilical Vein Endothelial Cells(HUVECs) (18) 방사선에 의한 제대 혈관내피세포의 apoptosis와 Basic Fibroblast Growth Factor의 억제 효과)

  • Lee Song Jae;Chang Jae Chul
    • Journal of The Korean Radiological Technologist Association
    • /
    • v.25 no.1
    • /
    • pp.317-323
    • /
    • 1999
  • The response of endothelial cells to ionizing radiation is thought to be an important factor in the overall response of normal tissue. It has been reported that basic fibroblast growth factor (bFGF), a potent mitogen for endothelial cells, protects endoth

  • PDF

In Vitro Culture of Endothelial Cell and Smooth Muscle Cell for Studying Vascular Diseases

  • Kim, Joo-Young
    • Journal of Yeungnam Medical Science
    • /
    • v.27 no.2
    • /
    • pp.91-97
    • /
    • 2010
  • Endothelial cells play a key role in pathological processes such as cancer cell metastasis, atherosclerosis, and diabetic retinopathy. Vascular smooth muscle cells directly involve in the formation of atheroma in atherosclerosis. Some kinds of the endothelial cells are simply harvested from the umbilical veins, the tunica intima of aortic walls, the retina using various enzymes solutions. Those purely isolated cells provide a powerful tool in vitro studies of the endothelial cell related diseases. In this context, the cultured smooth muscle cells after the isolation from the tunica media of aortic walls are also used for elucidating the pathogenesis of atherosclerosis. Here, I briefly introduce articles that include the isolation of human umbilical vein endothelial cells(HUVEC), aortic endothelial and smooth muscle cells, retinal microvascular endothelial cells(RMEC), as well as the diseases' applications of these cells.

  • PDF

Inhibitory effect of the extract of Catalpa ovata G. Don. on endothelial adhesion molecule expression (개오동나무 추출물의 내피세포 부착분자 발현 억제 효과)

  • Choi, Byung-Min;Chong, Myong-Soo;Song, Ho-Joon
    • The Korea Journal of Herbology
    • /
    • v.22 no.4
    • /
    • pp.137-143
    • /
    • 2007
  • Objectives : Catalpa ovata G. Don (Bignoniaceae) has been shown to possess a variety of pharmacological activities. However, the effect of Catalpa ovata G. Don on endothelial adhesion molecule expression has not been reported. Methods : To examine the effect of Catalpa ovata G. Don on the expression of adhesion molecules in human umbilical vein endothelial cells (HUVECs) stimulated with tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), we used various methods such as Western blot analysis, reverse tranascription-polymerase chain reaction (RT-PCR), and luciferase activity assay. Results : 1. The extract of Catalpa ovata G. Don inhibited the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in HUVECs stimulated with TNF-${\alpha}$. 2. The extract of Catalpa ovata G. Don reduced TNF-${\alpha}$-induced adhesion of leukocytes to HUVECs. 3. In addition, The extract of Catalpa ovata G. Don inhibited the promoter activities of ICAM-1 and VCAM-1. Conclusions : These results that Catalpa ovata G. Don may be beneficial in the treatment of inflammatory such as atherosclerosis.

  • PDF

Constructing a Three-Dimensional Endothelial Cell Layer in a Circular PDMS Microchannel

  • Choi, Jong Seob;Piao, Yunxian;Kim, Kyung Hoon;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.274.2-274.2
    • /
    • 2013
  • We described a simple and efficient fabrication method for generating microfluidic channels with a circular-cross sectional geometry by exploiting the reflow phenomenon of a thick positive photoresist. Initial rectangular shaped positive photoresist micropatterns on a silicon wafer, which were fabricated by a conventional photolithography process, were converted into a half-circular shape by tuning the temperature to around $105^{\circ}C$. Through optimization of the reflow conditions, we could obtain a perfect circular micropattern of the positive photoresist, and control the diameter in a range from 100 to 400 ${\mu}m$. The resultant convex half-circular photoresist was used as a template for fabricating a concave polydimethylsiloxane (PDMS) through a replica molding process, and a circular PDMS microchannel was produced by bonding two half-circular PDMS layers. A variety of channel dimensions and patterns can be easily prepared, including straight, S-curve, X-, Y-, and T-shapes to mimic an in vivo vascular network. To inform an endothelial cell layer, we cultured primary human umbilical vein endothelial cells (HUVECs) inside circular PDMS microchannels, and demonstrated successful cell adhesion, proliferation, and alignment along the channel.

  • PDF

Effects of Faeces Trogopterori on the Production of Chemokine in HUVECs (오령지 물추출물이 혈관내피세포의 chemokine 생성에 미치는 영향)

  • Moon, Chang-Min;Kwon, Kang-Beom;Ryu, Do-Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.5
    • /
    • pp.822-826
    • /
    • 2010
  • In order to validate the use of Faeces Trogopterori as an anti-inflammatory drug in the traditional Korean medicine, I have investigated the effect of water-soluble extract of F. Trogopterori (EFT) on the production of monocyte chemoattractant protein-1 (MCP-1), of which chemokine stimulates the migration of mononuclear cells, in human umbilical vein endothelial cells (HUVECs) stimulated with tumor necrosis factor-alpha. The extract inhibited dose-dependently MCP-1 production without its cytotoxic effect on HUVECs, as measured by enzyme-linked immunosorbent assay, and significantly decreased mRNA levels of MCP-1, as determined using reverse transcription polymerase chain reaction. These results suggest that F. Trogopterori may have therapeutic potential in the control of endothelial disorders caused by inflammation.

Epigallocatechin-3-gallate Regulates NADPH Oxidase Expression in Human Umbilical Vein Endothelial Cells

  • Ahn, Hee-Yul;Kim, Chan-Hyung;Ha, Tae-Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.5
    • /
    • pp.325-329
    • /
    • 2010
  • Vascular NADPH oxidase plays a pivotal role in producing superoxide in endothelial cells and thus acts in the initiation and development of inflammatory cardiovascular diseases such as atherosclerosis. Epigallocatechin-3-gallate (EGCG), the major catechin derived from green tea, has multiple beneficial effects for treating cardiovascular disease but the effect of EGCG on the expression of vascular NADPH oxidase remains unknown. In this study, we investigated the mechanism(s) by which EGCG might inhibit the expression of subunits of NADPH oxidase, namely $p47^{phox}$, $p67^{phox}$ and $p22^{phox}$, induced by angiotensin II (Ang II) in human umbilical vein endothelial cells. Ang II increased the expression levels of $p47^{phox}$, $p67^{phox}$, and $p22^{phox}$, but EGCG counteracted this effect on $p47^{phox}$. Moreover, EGCG did not affect the production of reactive oxygen species induced by Ang II. These data suggest a novel mechanism whereby EGCG might provide direct vascular benefits for treating inflammatory cardiovascular diseases.

Effect of ChungHuyl-Plus on inflammatory factors in Human Umbilical Vein Endothelial Cells (HUVECs) (청혈플러스가 혈관내피세포에서 염증 지표인자에 미치는 영향)

  • Seo, Dong-hyo;Joo, In-Hwan;Kim, Dong-Hee
    • Journal of Haehwa Medicine
    • /
    • v.27 no.2
    • /
    • pp.11-20
    • /
    • 2018
  • Objectives : Coronary and cerebrovascular disease with high mortality is a major factor in arteriosclerosis. Pro-inflammatory cytokines damage vascular endothelial cells, leading to vascular inflammation. These vascular inflammation can build up cholesterol and thrombus to cause atherosclerosis. Methods : In this study, we researched the effect of ChungHyul-Plus for vascular inflammation in human umbilical vein endothelial cells (HUVECs) stimulated with tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$). Change in mRNA expression of inflammatory cytokines (CCL5, CXCL8, CX3CL1, and MCP-1), cell adhesion molecules (VCAM-1 and ICAM-1), and anti-inflammation modulators (KLF2 and eNOS) were quantified by qRT-PCR. Results : ChungHyul-Plus decreased expression of inflammatory cytokines and cell adhesion molecules and increased anti-inflammation modulators expression in $TNF-{\alpha}$ stimulated HUVECs. Conclusions : These results suggest that ChungHyul-Plus can be used in the treatment and prevention of vascular inflammation and arteriosclerosis.