• Title/Summary/Keyword: Human risk assessment

Search Result 652, Processing Time 0.027 seconds

Toxicity of Nanomaterials and Strategy of Risk Assessment (나노물질의 독성과 위해성평가 전략)

  • Park, Kwang-Sik
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.4 s.51
    • /
    • pp.259-271
    • /
    • 2005
  • Engineered nanoparticles exhibit a variety of unique and tunable chemical and physical properties. These unique properties make the nanoparticles central components and widespread potential applications in nanoindustry. However, the potential toxicities of nanoparticles have not been fully evaluated. Recently, the impacts of nanoparticles to human and environment became the emerging issue of toxicology. In this article, physicochemical properties and toxicities of carbon nanotube, fullerene, quantum dots, and other types of nanomaterials were reviewed and the strategy of risk assessment were suggested based on the frame of chemical assessment.

Application of Toxicogenomic Technology for the Improvement of Risk Assessment

  • Hwang, Myung-Sil;Yoon, Eun-Kyung;Kim, Ja-Young;Son, Bo-Kyung;Jang, Dong-Deuk;Yoo, Tae-Moo
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.3
    • /
    • pp.260-266
    • /
    • 2008
  • Recently, there has been scientific discussion on the utility of -omics techniques such as genomics, proteomics, and metabolomics within toxicological research and mechanism-based risk assessment. Toxicogenomics is a novel approach integrating the expression analysis of genes (genomic) or proteins (proteomic) with traditional toxicological methods. Since 1999, the toxicogenomic approach has been extensively applied for regulatory purposes in order to understand the potential toxic mechanisms that result from chemical compound exposures. Therefore, this article's purpose was to consider the utility of toxicogenomic profiles for improved risk assessment, explore the current limitations in applying toxicogenomics to regulation, and finally, to rationalize possible avenues to resolve some of the major challenges. Based on many recent works, the significant impact toxicogenomic techniques would have on human health risk assessment is better identification of toxicity pathways or mode-of-actions (MOAs). In addition, the application of toxicogenomics in risk assessment and regulation has proven to be cost effective in terms of screening unknown toxicants prior to more extensive and costly experimental evaluation. However, to maximize the utility of these techniques in regulation, researchers and regulators must resolve many parallel challenges with regard to data collection, integration, and interpretation. Furthermore, standard guidance has to be prepared for researchers and assessors on the scientifically appropriate use of toxicogenomic profiles in risk assessment. The National Institute of Toxicological Research (NITR) looks forward to an ongoing role as leader in addressing the challenges associated with the scientifically sound use of toxicogenomics data in risk assessment.

Indoor Air Quality and Human Health Risk Assessment for Un-regulated Small-sized Sensitive Population Facilities (소규모 다중이용시설의 실내공기질 실태조사 및 건강위해성평가: 민감군 이용시설을 중심으로)

  • Shin, Hyejin;Park, Woosang;Kim, Bokyung;Ji, Kyunghee;Kim, Ki-Tae
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.4
    • /
    • pp.397-407
    • /
    • 2018
  • Objectives: The purpose of this study is to investigate human health risk assessment of indoor air pollutants at small-sized public-use facilities (e.g., daycare centers, hospital and elderly care facilities) that the susceptible population is mainly used. Methods: To assess indoor air quality (IAQ), the concentrations of indoor air contaminants such as HCHO, benzene, toluene, ethylbenzene, xylene, styrene, PM-10, CO, $NO_2$ and $O_3$ in air samples were measured according to the Indoor Air Quality Standard Method. By conducting the questionnaire survey, the major factors influencing IAQ were identified. Human health risk assessment was carried out in the consideration of type of use (user and worker) at 75 daycare centers, 34 hospitals and 40 elderly care facilities. Results: As a result of measurement of indoor air contaminants, the average concentration of HCHO and TVOCs in hospitals was higher than daycare centers and elderly care facilities, about 8.8 and 23.5% of hospitals were exceeded by IAQ standard. In human health risk assessment, for the user of daycare centers and elderly care facilities, the mean carcinogenic risk of HCHO inhalation was higher than acceptable value. Except for HCHO, other values were determined under acceptable risk. Similarly, for the worker of hospitals, the mean carcinogenic risk of HCHO inhalation was higher than acceptable value and other values were evaluated under acceptable risk. In contrast, the risk levels of other contaminants measured in elderly care facilities were acceptable. In the determination of factors influencing IAQ, the construction year, building type, ventilation time, and the use of air cleaner were identified. Conclusions: This study provides the information for establishing the plans of public health management of IAQ at small-sized public-use facilities that have not yet been placed under the regulation. The findings suggest the consideration of human health risk assessment results for the IAQ standards.

Methodologic Issues in Using Epidemiologic Studies for Quantitative Risk Assessment

  • Stayner Leslie
    • 대한예방의학회:학술대회논문집
    • /
    • 1994.02a
    • /
    • pp.417-425
    • /
    • 1994
  • Although animal studies have been used most often for quantitative risk assessment, it is generally recognized that well-conducted epidemiologic studies would provide the best basis for estimating human risk. However, there are several features related to the design and analysis of epidemiologic studies that frequently limit their usefulness for quantitating risks. The lack of accurate information on exposure in epidemiologic studies is perhaps the most frequently cited limitation of these studies for risk assessment. However. other features of epidemiologic study design, such as statistical power, length of follow-up, confounding, and effect modification, may also limit the inferences that can be drawn from these studies. Furthermore, even when the aforementioned limitations are overcome, substantial uncertainty exists concerning the choice of an appropriate statistical (or biologic) model for extrapolation beyond the range of exposures observed in a particular study. This paper focuses on presenting a review and discussion of the methodologic issues involved in using epidemiologic studies for risk assessment. This review concentrates on the use of retrospective, cohort, mortality studies of occupational groups for assessing cancer risk because this is the most common application of epidemiologic data for quantitative risk assessment (QRA). Epidemiologic data should not be viewed as a panacea for the problems inherent in using animal bioassay data for QRA. Rather, information that can be derived from epidemiologic and toxicologic studies complement one another, and both data sources need to be used to provide the best characterization of human risk.

  • PDF

Risk Assessment of Indoor Pollution by BTEX Released from Groundwater (지하수내 BTEX에 의한 실내오염시 위해도 평가)

  • 유동한;이한수;김상준;양지원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.5
    • /
    • pp.373-381
    • /
    • 2002
  • Benzene, Ethyl-benzene, Toluene and Xylene (BTEX) can be released to a groundwater in case of the oil leakage from underground storage tank of a gas station. These chemicals are found to contribute to the total inhalation risk from contaminated indoor air. This study presents the assessment of a human exposure to such chemicals released from the groundwater into indoor air. At first, a 2-compartment model is developed to describe the transfer and distribution of the chemicals released from groundwater in a house through showering, washing clothes, and flushing toilets. The model is used to estimate a daily human exposure through inhalation of such BTEX for adults based on two sets of exposure scenarios. Finally, a sensitivity analysis is used to identify important parameters. The results obtained from the study would help to increase the understanding of risk assessment issues associated with the indoor pollution by BTEX released from contaminated groundwater.

Adequacy Evaluation of Fish Intake Parameter used for Human Health Risk Assessment to Derive Freshwater Quality Criteria in Korea (국내담수지역 인체위해성기반 준거치 산정에 활용되는 어류섭취량인자 타당성 평가)

  • An, Youn-Joo;Nam, Sun-Hwa
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.3
    • /
    • pp.364-370
    • /
    • 2011
  • Water quality criteria for human health protection are derived based on the human health risk assessment. Water quality criteria in Korean freshwater bodies have been derived according to the equations developed by the US Environmental Protection Agency. The equations include the fish intake parameter, which is very important factor that significantly influences on the criteria derivation. So far, several fish intake values were used in human health risk assessment for water quality standards and effluent standards. However, these values are not consistent and they refer to various sources. Therefore, there is a need to suggest the most appropriate value of fish intake parameter to derive freshwater quality criteria in Korea. In this study, national and international fish intake values were widely collected and evaluated to select the adequate value of fish intake parameter that can be applied in Korea. The USEPA presented fish intake parameter as the 17.5 g/day for general adults and sport fishers and 142.4 g/day for subsistence fishers. In Korean reports, wide range values of 2 to 67.7 g/day were suggested as fish intake value. These values included finfish and shellfish intakes in common but had various habits. This study found that the 52.4 g/day suggested in Korean Exposure Factors Handbook published by the Ministry of Environment in 2007 seemed to be the suitable fish intake parameter to derive the freshwater quality criteria in Korea. The value is based on water corrected intakes of finfish and shellfish present in freshwater and coastal areas. We expect that this report can be useful to select suitable fish intake value in human health risk assessment for establishing freshwater quality standard in Korea.

Electric Shock Risk Assessment of the Human Body and Potential Distribution Analysis by FLUX3D in a Public Bathtub (공중욕조에서의 FLUX3D에 의한 전위분포 해석 및 인체의 전격위험성 평가)

  • Kim, Doo-Hyun;Kim, Sung-Chul;Lee, Jong-Ho;Kim, Han-Sang;Kim, Chong-Min
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.2 s.80
    • /
    • pp.41-46
    • /
    • 2007
  • This paper considers the electrical shock risk of the human body due to underwater leakage current in such places of public baths. Many submerged electric facilities in a public bath may create a severe electric shock hazard for the human body, since wet body in an accidentally energized bathtub can result in low electrical resistance through the human body for leakage or fault currents. Therefore a major consideration, in the context of electrical safety underwater, is the shock risk to the bather as a result of electric current flowing through the water in bathtub. To assess the electric shock risk and to analyze the potential distribution in a bathtub, 2 different situation cases are set up, then experimental and simulation methods are adopted. The validity of 2 cases of simulation and experiment data in a bathtub for electric distribution underwater are compared and analyzed. Also electric shock risk assessment underwater in a real public bathtub by simulation program package, Flux 3D, was conducted herein, and the results are presented and discussed.

Human Health Risk Assessment of Benzene from Industrial Complexes of Chungcheong and Jeonla Province (충청·전라지역 산업단지 주변지역에서의 벤젠 인체 위해성 평가)

  • Jang, Yong-Chul;Lee, Sungwoo;Shin, YongSeung;Kim, Heekap;Lee, Jonghyun
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.4
    • /
    • pp.497-507
    • /
    • 2011
  • This research studied human health risk assessment of benzene from industrial complexes of Chungcheong Province (Seosan industrial complex) and Jeonla Province (Iksan industrial complex and Yeosoo industrial complex). The residents near the industrial complexes areas can be often exposed to volatile organic compounds (e.g., benzene, toluene, xylenes) through a number of exposure pathways, including inhalation of the organic pollutant via various environmental matrices (air, water and soil), contaminated water, and soil intake. Benzene is well known to be a common carcinogenic and toxic compound that is produced from industrial and oil refinery complexes. In this study, a number of samples from water, air, and soil were taken from the residential settings and public school zones located near the industrial complex sites. Based on the carcinogenic risk assessment, the risk estimates were slightly above $10{\times}10^{-6}$ at all three industrial sites. According to deterministic risk assessment, inhalation was the most important route. The distribution of benzene in the environment would be dependent on vapor pressure, and the physical property influencing the extent of the potential risks. Non-carcinogenic risk assessment of benzene shows that the values of Hazard Index(HI) were much lower than 1.0 at all industrial complexes. Therefore, benzene was not a cause of concern in terms of non-carcinogenic risk posed to the residents near the sites. When compared to probabilistic risk assessment, the CTE(central tendency exposure) cancer risk values of deterministic risk assessment were close to the mean values predicted by the probabilistic risk assessment. The RME(reasonable maximum exposure) values fell within the range of 95% to 99.9% estimated by the probabilistic risk assessment. Since the values of carcinogenic risk assessment were higher than $10{\times}10^{-6}$, further detailed monitoring and refined risk assessment for benzene may be warranted to estimate more reliable and potential inhalation risks to receptors near the industrial complexes.

Risk Assessment of Airborne Toxic Metals in Thejon Industrial Complex (대전공단지역의 대기중 독성금속에 대한 위해도 평가)

  • Lee, Jin Hong;Yun, Mi Jung;Nam, Byung Hyun;Wang, Chang Keun;Kang, Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.8 no.2
    • /
    • pp.1-8
    • /
    • 1999
  • The research centers on the concentration profile and risk assessment of toxic metals for ambient air in Taejon industrial complex. Airborne concentrations of each toxic metal for risk assessment were obtained from 2-year sampling by high volume air sampler and analysis by ICP-MS and ICP-AES in the complex. The long-term arithmetic mean of human carcinogen, arsenic, hexavalent chromium and nickel subsulfide was 5.53, 2.16 and $3.46ng/m^3$ while the mean of probable human carcinogen, beryllium, cadmium and lead was 0.08, 2.35, $293.29ng/m^3$, respectively. And the long-term arithmetic mean concentration of non-carcinogenic metal, manganese was $55.91ng/m^3$. The point risk estimate for the inhalation of carcinogenic metals was $3.6{\times}10^{-5}$, which was higher than a risk standard of $10^{-5}$. About 75% of the cancer risk was to the inhalation of human carcinogen, arsenic. Thus, it is necessary to properly manage arsenic risk in Taejon industrial complex. The point hazard index by the inhalation of manganese was 1.1. Therefore, an investigation into Taejon industrial complex is needed to obtain more fine long-term concentration data for airborne non-carcinogenic metals including manganese.

  • PDF

Development of Human Exposure and Risk Assessment System for Chemicals in Fish and Fishery Products (수산생물 중 유해물질의 인체 노출 및 위해평가 시스템 개발)

  • Lee, Jaewon;Lee, Seungwoo;Choi, Minkyu;Lee, Hunjoo
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.5
    • /
    • pp.454-461
    • /
    • 2021
  • Background: Fish and fishery products (FFPs) unintentionally contaminated with various environmental pollutants are major exposure pathways for humans. To protect human health from the consumption of contaminated FFPs, it is essential to develop a systematic tool for evaluating exposure and risks. Objectives: To regularly, accurately, and quickly evaluate adverse health outcomes due to FFPs contamination, we developed an automated dietary exposure and risk assessment system called HERA (the Human Exposure and Risk Assessment system for chemicals in FFPs). The aim of this study was to develop an overall architecture design and demonstrate the major features of the HERA system. Methods: For the HERA system, the architecture framework consisted of multi-layer stacks from infrastructure to fish exposure and risk assessment layers. To compile different contamination levels and types of seafood consumption datasets, the data models were designed for the classification codes of FFP items, contaminants, and health-based guidance values (HBGVs). A systematic data pipeline for summarizing exposure factors was constructed through down-scaling and preprocessing the 24-hour dietary recalls raw dataset from the Korea National Health and Nutrition Examination Survey (KNAHES). Results: According to the designed data models for the classification codes, we standardized 167 seafood items and 2,741 contaminants. Subsequently, we implemented two major functional workflows: 1) preparation and 2) main process. The HERA system was developed to enable risk assessors to accumulate the concentration databases sustainably and estimate exposure levels for several populations linked to seafood consumption data in KNAHES in a user-friendly manner and in a local PC environment. Conclusions: The HERA system will support policy-makers in making risk management decisions based on a nation-wide risk assessment for FFPs.