• 제목/요약/키워드: Human ribosomal protein S3(rpS3)

검색결과 7건 처리시간 0.03초

Immunohistochemical Studies of Human Ribosomal Protein S3 (rpS3)

  • Choi, Soo-Hyun;Kim, So-Young;An, Jae-Jin;Lee, Sun-Hwa;Kim, Dae-Won;Won, Moo-Ho;Kang, Tae-Cheon;Park, Jin-Seu;Eum, Won-Sik;Kim, Joon;Choi, Soo-Young
    • BMB Reports
    • /
    • 제39권2호
    • /
    • pp.208-215
    • /
    • 2006
  • The human ribosomal protein S3 (rpS3) was expressed in E. coli using the pET-I5b vector and the monoclonal antibodies (mAbs) were produced and characterized. A total of five hybridoma cell lines were established and the antibodies recognized a single band of molecular weight of 33 kDa on immunoblot with purified rpS3. When the purified rpS3 was incubated with the mAbs, the UV endonuclease activity of rpS3 was inhibited up to a maximum of 49%. The binding affinity of mAbs to rpS3 determined by using a biosensor technology showed that they have similar binding affinities. Using the anti-rpS3 antibodies as probes, we investigated the cross-reactivities of various other mammalian brain tissues and cell lines, including human. The immunoreactive bands on Western blots appeared to be the same molecular mass of 33 kDa in all animal species tested. They also appear to be extensively cross-reactive among different organs in rat. These results demonstrated that only one type of immunologically similar rpS3 protein is present in all of the mammalian brain tissues including human. Furthermore, these antibodies were successfully applied in immunohistochemistry in order to detect rpS3 in the gerbil brain tissues. Among the various regions in the brain tissues, the rpS3 positive neurons were predominantly observed in the ependymal cells, hippocampus and substantia nigra pars compacta. The different distributions of rpS3 in brain tissues reply that rpS3 protein may play an important second function in the neuronal cells.

DNA Repair Activity of Human rpS3 is Operative to Genotoxic Damage in Bacteria

  • JANG CHANG-YOUNG;LEE JAE YUNG;KIM JOON
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권3호
    • /
    • pp.484-490
    • /
    • 2005
  • Human ribosomal protein S3 (rpS3), which has a DNA repair endonuclease activity, is a multifunctional protein. This protein is involved in DNA repair, translation, and apoptosis. In particular, rpS3 has a lyase activity, which cleaves the phosphodiester bond of damaged sites such as cyclobutane pyrimidine dimers and AP sites. Here, using deletion analysis, we identified that the repair endonuclease domain resides in the C-terminal region (165-243 aa) of rpS3. We also found that ectopic expression of GST-rpS3 in bacterial strain BL21 promoted the resistance of these cells to ultraviolet (UV) radiation and hydrogen peroxide ($H_{2}O_{2}$) treatment. The repair domain of rpS3 was sufficient to exhibit the resistance to UV irradiation and recover cell growth and viability, showing that the repair activity of rpS3 is responsible for the resistance to UV irradiation. Our study suggests that rpS3 is able to process DNA damage in bacteria via its repair domain, showing the resistance to genotoxic stress. This implies that rpS3-like activity could be operative in bacteria.

Multiple functions of human UV DNA repair endonuclease III

  • Jang, Chang-Young;Kim, Joon
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.182-185
    • /
    • 2002
  • There are 3 UV DNA repair endonuclease activities in mammalian cells that cleave UV -irradiated DNA. Interestingly, mammalian UV endonuclease III with MW of 26.7kD has a lyase activity on AP sites. It also cleaves the phosphodiester bond within a cyclobutane pyrimidine dimer. Genomic analysis of human repair endonuclease III gene revealed that this gene has 100% sequence identity with ribosomal protein S3 (rpS3). Therefore, rpS3 seems to function both in translation and in DNA repair. This gene of about 6.1 kb contains 6 introns and 7 exons, and the first and fifth introns of human rpS3 gene contain functional U15 small nucleolar (sno) RNAs which appear to be involved in ribosome assembly. It is to be noted that the column profile of the endonuclease activity of rpS3 appears to be altered in Xeroderma Pigmentosum (XP) group D cells compared to normal cells indicating that this protein is involved in XP disease as well. XP is a human disease characterized by high sensitivity of skin by UV- or sun-light irradiation and by high frequency of developing skin cancers. We also report here that rpS3 protein is involved in other cellular functions.

  • PDF

Expression and Characterization of the Human rpS3 in a Methylotrophic Yeast Pichia pastoris

  • Kim, Joon;Lee, Jae-Yung;Jung, Sang-Oun;Youn, Bu-Hyun;Kwon, Oh-Sik
    • Journal of Microbiology
    • /
    • 제38권2호
    • /
    • pp.88-92
    • /
    • 2000
  • A human ribosomal protein S3 (rpS3), which also functions as a DNA repair enzyme(UV endonuclease III), was expressed in a methylotrophic yeast, Pichia pastoris, and biochemically characterized. UV endonuclease activity was preiously characterized, and this activity of mammalian rpS3 was found to be non-specfic upon purification and storage. Under the Pichia expression system, the subcloned cDNA of the human rpS3 gene revealed a peptide of 42 kDa by SDS-PAGE and Western blot. The secreted form of human rpS3 rendered no endonuclease activity while the intracellular form showed UV specific endonuclease activity by the nick circle assay.

  • PDF

Molecular Characterization and Expression Analysis of Ribosomal Protein S6 Gene in the Cashmere Goat (Capra hircus)

  • Bao, Wenlei;Hao, Xiyan;Zheng, Xu;Liang, Yan;Chen, Yuhao;Wang, Yanfeng;Wang, Zhigang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권11호
    • /
    • pp.1644-1650
    • /
    • 2013
  • Ribosomal protein (rp) S6 is the substrate of ribosomal protein S6K (S6 kinase) and is involved in protein synthesis by mTOR/S6K/S6 signaling pathway. Some S6 cDNA have been cloned in mammals in recent years but has not been identified in the goat. To facilitate such studies, we cloned the cDNA encoding Cashmere goat (Capra hircus) S6 (GenBank accession GU131122) and then detected mRNA expression in seven tissues by real time PCR and protein expression in testis tissue by immunohistochemisty. Sequence analysis indicated that the obtained goat S6 was a 808 bp product, including a 3' untranslated region of 58 bp and an open reading frame of 750 bp which predicted a protein of 249 amino acids. The predicted amino acid sequence was highly homologous to cattle, human, mouse and rat S6. Expression analysis indicated S6 mRNA was expressed extensively in detected tissues and S6 protein was expressed in testis tissue.

Human rpS3 is involved in DNA repair and cell cycle control

  • Kim, Hag-Dong;Jang, Chang-Young;Kim, oon-Seong;Sung, Ha-Chin;Lee, Jae-Yung;Lee, Byeong-Jae;Kim, Joon
    • Journal of Photoscience
    • /
    • 제10권2호
    • /
    • pp.195-198
    • /
    • 2003
  • In the cellular response to DNA damaging agents, cells undergo cell cycle arrest or apoptosis against irrepairable DNA damage. RpS3 is known to function as UV DNA repair endonuclease III and ribosomal protein S3. In this study, we used normal and rpS3-overexpressed 293T cells to examine the role of rpS3 in response to DNA damaging agents. When 293T cells transfected with rpS3 were irradiated with UV, the pattern of cell cycle was dramatically changed in comparison with un-transfected 293T cells. We also found that the expression of rpS3 in normal cells was increased by treatment with DNA damaging agents. By means of Western and Northern blot analyses in rat tissues, we showed the expression pattern of rpS3 protein and its mRNA. These data suggest that DNA repair and cell cycle arrest are interrelated to each other through rpS3, and the increased expression of rpS3 seems to regulate the cell cycle arrest by DNA damaging agents.

  • PDF

Levosulpiride, (S)-(-)-5-Aminosulfonyl-N-[(1-ethyl-2-pyrrolidinyl) methyl]-2-methoxybenzamide, enhances the transduction efficiency of PEP-1-ribosomal protein S3 in vitro and in vivo

  • Ahn, Eun-Hee;Kim, Dae-Won;Kim, Duk-Soo;Woo, Su-Jung;Kim, Hye-Ri;Kim, Joon;Lim, Soon-Sung;Kang, Tae-Cheon;Kim, Dong-Joon;Suk, Ki-Tae;Park, Jin-Seu;Luo, Qiuxiang;Eum, Won-Sik;Hwang, Hyun-Sook;Choi, Soo-Young
    • BMB Reports
    • /
    • 제44권5호
    • /
    • pp.329-334
    • /
    • 2011
  • Many proteins with poor transduction efficiency were reported to be delivered to cells by fusion with protein transduction domains (PTDs). In this study, we investigated the effect of levosulpiride on the transduction of PEP-1 ribosomal protein S3 (PEP-1-rpS3), and examined its influence on the stimulation of the therapeutic properties of PEP-1-rpS3. PEP-1-rpS3 transduction into HaCaT human keratinocytes and mouse skin was stimulated by levosulpiride in a manner that did not directly affect the cell viability. Following 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation in mice, levosulpiride alone was ineffective in reducing TPA-induced edema and in inhibiting the elevated productions of inflammatory mediators and cytokines, such as cyclooxygenase-2, inducible nitric oxide synthase, interleukin-6 and -1${\beta}$, and tumor necrosis factor-${\alpha}$. Anti-inflammatory activity by PEP-1-rpS3 + levosulpiride was significantly more potent than by PEP-1-rpS3 alone. These results suggest that levosulpiride may be useful for enhancing the therapeutic effect of PEP-1-rpS3 against various inflammatory diseases.