Browse > Article
http://dx.doi.org/10.5713/ajas.2013.13157

Molecular Characterization and Expression Analysis of Ribosomal Protein S6 Gene in the Cashmere Goat (Capra hircus)  

Bao, Wenlei (College of Life Science, Inner Mongolia University)
Hao, Xiyan (College of Life Science, Inner Mongolia University)
Zheng, Xu (College of Life Science, Inner Mongolia University)
Liang, Yan (College of Life Science, Inner Mongolia University)
Chen, Yuhao (College of Life Science, Inner Mongolia University)
Wang, Yanfeng (College of Life Science, Inner Mongolia University)
Wang, Zhigang (College of Life Science, Inner Mongolia University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.26, no.11, 2013 , pp. 1644-1650 More about this Journal
Abstract
Ribosomal protein (rp) S6 is the substrate of ribosomal protein S6K (S6 kinase) and is involved in protein synthesis by mTOR/S6K/S6 signaling pathway. Some S6 cDNA have been cloned in mammals in recent years but has not been identified in the goat. To facilitate such studies, we cloned the cDNA encoding Cashmere goat (Capra hircus) S6 (GenBank accession GU131122) and then detected mRNA expression in seven tissues by real time PCR and protein expression in testis tissue by immunohistochemisty. Sequence analysis indicated that the obtained goat S6 was a 808 bp product, including a 3' untranslated region of 58 bp and an open reading frame of 750 bp which predicted a protein of 249 amino acids. The predicted amino acid sequence was highly homologous to cattle, human, mouse and rat S6. Expression analysis indicated S6 mRNA was expressed extensively in detected tissues and S6 protein was expressed in testis tissue.
Keywords
Cashmere Goat; Ribosomal Protein (S6) Gene; Expression Pattern; The Mammalian Target of Rapamycin (mTOR);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Arnold, K., L. Bordoli, J. Kopp, and T. Schwede. 2006. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195-201.   DOI   ScienceOn
2 Bartel, D. P. 2009. MicroRNAs: target recognition and regulatory functions. Cell 136:215-233.   DOI   ScienceOn
3 Boylan, J. M., P. Anand, and P. A. Gruppuso. 2001. Ribosomal protein S6 phosphorylation and function during late gestation liver development in the rat. J. Biol. Chem. 276:44457-44463.   DOI   ScienceOn
4 Chen, W. and D. P. Dittmer. 2011. Ribosomal protein S6 interacts with the latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus. J. Virol. 85:9495-9505.   DOI   ScienceOn
5 Fenton, T. R. and I. T. Gout. 2011. Functions and regulation of the 70kDa ribosomal S6 kinases. Int. J. Biochem. Cell Biol. 43:47-59.   DOI   ScienceOn
6 Flotow, H. and G. Thomas. 1992. Substrate recognition determinants of the mitogen-activated 70K S6 kinase from rat liver. J. Biol. Chem. 267:3074-3078.
7 Guex, N. and M. C. Peitsch. 1997. $SWISS{{\copyright}}$\MODEL and the $Swiss{{\copyright}}$\Pdb Viewer: an environment for comparative protein modeling. Electrophoresis 18:2714-2723.   DOI   ScienceOn
8 Hay, N. and N. Sonenberg. 2004. Upstream and downstream of mTOR. Genes Dev. 18:1926-1945.   DOI   ScienceOn
9 Hutchinson, M. S., Y. Figenschau, B. Almas, I. Njolstad, and R. Jorde. 2011. Serum 25-hydroxyvitamin D levels in subjects with reduced glucose tolerance and type 2 diabetes - the Tromso OGTT-study. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung Journal international de vitaminologie et de nutrition. Int. J. Vit. Nutr. Res. 81:317-327.   DOI   ScienceOn
10 Iwenofu, O. H., R. D. Lackman, A. P. Staddon, D. G. Goodwin, H. M. Haupt, and J. S. Brooks. 2008. Phospho-S6 ribosomal protein: a potential new predictive sarcoma marker for targeted mTOR therapy. Modern pathology: An official journal of the United States and Canadian Academy of Pathology, Inc. 21:231-237.   DOI   ScienceOn
11 Jefferies, H. B., S. Fumagalli, P. B. Dennis, C. Reinhard, R. B. Pearson, and G. Thomas. 1997. Rapamycin suppresses 5'TOP mRNA translation through inhibition of p70s6k. EMBO J. 16:3693-3704.   DOI   ScienceOn
12 Kahvejian, A., G. Roy, and N. Sonenberg. 2001. The mRNA closed-loop model: the function of PABP and PABP-interacting proteins in mRNA translation. Cold Spring Harb. Symp. Quant. Biol. 66:293-300.
13 Klann, E., M. D. Antion, J. L. Banko, and L. Hou. 2004. Synaptic plasticity and translation initiation. Learn. Mem. 11:365-372.   DOI   ScienceOn
14 Krieg, J., J. Hofsteenge, and G. Thomas. 1988. Identification of the 40 S ribosomal protein S6 phosphorylation sites induced by cycloheximide. J. Biol. Chem. 263:11473-11477.
15 Li, Y., S. Mitsuhashi, M. Ikejo, N. Miura, T. Kawamura, T. Hamakubo, and M. Ubukata. 2012. Relationship between ATM and ribosomal protein S6 revealed by the chemical inhibition of Ser/Thr protein phosphatase type 1. Biosci. Biotechnol. Biochem. 76:486-494.   DOI   ScienceOn
16 Kundu-Michalik, S., M. A. Bisotti, E. Lipsius, A. Bauche, A. Kruppa, T. Klokow, G. Kammler, and J. Kruppa. 2008. Nucleolar binding sequences of the ribosomal protein S6e family reside in evolutionary highly conserved peptide clusters. Mol. Biol. Evol. 25:580-590.   DOI   ScienceOn
17 Laplante, M. and D. M. Sabatini. 2012. mTOR signaling in growth control and disease. Cell 149:274-293.   DOI   ScienceOn
18 Ledda, M., M. Di Croce, B. Bedini, F. Wannenes, M. Corvaro, P. P. Boyl, S. Caldarola, F. Loreni, and F. Amaldi. 2005. Effect of 3'UTR length on the translational regulation of 5'-terminal oligopyrimidine mRNAs. Gene 344:213-220.   DOI   ScienceOn
19 Magnuson, J., F. Leonessa, and G. S. Ling. 2012. Neuropathology of explosive blast traumatic brain injury. Curr. Neurol. Neurosci. Rep. 12:570-579.   DOI   ScienceOn
20 Mayer, C., J. Zhao, X. Yuan, and I. Grummt. 2004. mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability. Genes Dev. 18:423-434.   DOI   ScienceOn
21 Mazumder, B., V. Seshadri, and P. L. Fox. 2003. Translational control by the 3'-UTR: the ends specify the means. Trends Biochem. Sci. 28:91-98.   DOI   ScienceOn
22 Parkhitko, C. A., C. O. Favorova, and E. P. Henske. 2011. Rabin8 protein interacts with GTPase Rheb and inhibits phosphorylation of Ser235/Ser236 in small ribosomal subunit protein S6. Acta Nat. 3:71-76.
23 Romeo, S., C. Maglio, M. A. Burza, C. Pirazzi, K. Sjoholm, P. Jacobson, P. A. Svensson, M. Peltonen, L. Sjostrom, and L. M. Carlsson. 2012. Cardiovascular events after bariatric surgery in obese subjects with type 2 diabetes. Diabetes Care. 35:2613-2617.   DOI
24 Pende, M., S. H. Um, V. Mieulet, M. Sticker, V. L. Goss, J. Mestan, M. Mueller, S. Fumagalli, S.C. Kozma, and G. Thomas. 2004. S6K1(-/-)/S6K2(-/-) mice exhibit perinatal lethality and rapamycin-sensitive 5'-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway. Mol. Cell. Biol. 24:3112-3124.   DOI   ScienceOn
25 Peterson, R. T., B. N. Desai, J. S. Hardwick, and S. L. Schreiber. 1999. Protein phosphatase 2A interacts with the 70-kDa S6 kinase and is activated by inhibition of FKBP12-rapamycinassociated protein. Proc. Natl. Acad. Sci. USA. 96:4438-4442.   DOI
26 Proud, C. G. 2002. Regulation of mammalian translation factors by nutrients. Eur. J. Biochem. 269:5338-5349.   DOI   ScienceOn
27 Rosner, M., C. Fuchs, H. Dolznig, and M. Hengstschlager. 2011. Different cytoplasmic/nuclear distribution of S6 protein phosphorylated at S240/244 and S235/236. Amino Acids 40:595-600.   DOI
28 Rosner, S., J. Konnerth, B. Plank, D. Salaberger, and C. Hansmann. 2010. Radial shrinkage and ultrasound acoustic emissions of fresh versus pre-dried Norway spruce sapwood. Trees (Berl West). 24:931-940.   DOI
29 Ruvinsky, I., M. Katz, A. Dreazen, Y. Gielchinsky, A. Saada, N. Freedman, E. Mishani, G. Zimmerman, J. Kasir, and O. Meyuhas. 2009. Mice deficient in ribosomal protein S6 phosphorylation suffer from muscle weakness that reflects a growth defect and energy deficit. PLoS One. 4:e5618.   DOI   ScienceOn
30 Ruvinsky, I. and O. Meyuhas. 2006. Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem. Sci. 31:342-348.   DOI   ScienceOn
31 Svitkin, Y. V. and N. Sonenberg. 2004. An efficient system for cap- and poly(A)-dependent translation in vitro. Methods Mol. Biol. 257:155-170.
32 Schmelzle, T. and M. N. Hall. 2000. TOR, a central controller of cell growth. Cell 103:253-262.   DOI   ScienceOn
33 Schwede, T., J. Kopp, N. Guex, and M.C. Peitsch. 2003. SWISS-MODEL: an automated protein homology-modeling server. Nucl. Acids Res. 31:3381-3385.   DOI   ScienceOn
34 Stark, A., J. Brennecke, N. Bushati, R. B. Russell, and S. M. Cohen. 2005. Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution. Cell 123:1133-1146.   DOI   ScienceOn
35 Tanguay, R. L. and D. R. Gallie. 1996. Translational efficiency is regulated by the length of the 3' untranslated region. Mol. Cell. Biol. 16:146-156.
36 Wullschleger, S., R. Loewith, and M. N. Hall. 2006. TOR signaling in growth and metabolism. Cell 124:471-484.   DOI   ScienceOn
37 Zhang, R. and B. Su. 2009. Small but influential: the role of microRNAs on gene regulatory network and 3'UTR evolution. J. Genet. Genomics 36:1-6.   DOI   ScienceOn