• 제목/요약/키워드: Human pose estimation

검색결과 119건 처리시간 0.02초

발의 움직임 추적에 의한 3차원 신발모델 정합 시스템 (Registration System of 3D Footwear data by Foot Movements)

  • 정다운;서융호;최종수
    • 대한전자공학회논문지SP
    • /
    • 제44권6호
    • /
    • pp.24-34
    • /
    • 2007
  • 정보화 성장과 함께 인간의 생활도 발전하면서, 정보의 접근이 보다 간편한 시스템들이 개발되고 있다. 본 논문에서는 한대의 카메라를 사용하여 3차원 신발 모델을 발에 정합하는 시스템을 제안한다. 인체 움직임 분석에서 전신 움직임에 대한 연구가 대부분인 것과 달리, 우리는 발의 움직임을 기반으로 한 새로운 움직임 분석 시스템을 제안한다. 본 논문은 시스템이 구현되는 과정과 결과를 설명한다. 3차원 신발모델을 이미지의 발에 투영하기 위해 발 추적, 투영, 자세 추정 과정으로 구성했다. 이 시스템은 2차원 영상 분석과 3차원 자세추정으로 나눠진다. 먼저 발 추적을 위해 발의 형태학적 특성에 따라 특징점을 찾는 방식을 제안한다. 그리고 별도의 영상 교정 없이 한 대의 카메라로 2차원 좌표와 3차원 좌표의 관계를 설정하는 기하학적 수식을 제안한다. 제안한 방법에 따라 응용 시스템을 구현하고 거리 오차를 측정한 결과 거의 유사한 위치로 정합 되는 것을 확인할 수 있었다.

타원체 모델과 깊이값 포인트 매칭 기법을 활용한 사람 움직임 추적 기술 (Human Motion Tracking based on 3D Depth Point Matching with Superellipsoid Body Model)

  • 김남규
    • 디지털콘텐츠학회 논문지
    • /
    • 제13권2호
    • /
    • pp.255-262
    • /
    • 2012
  • 사람 움직임 추적 알고리즘은 인간과 컴퓨터 상호작용, 화상회의, 감시 시스템, 게임 및 엔터테인먼트 분야에서 반드시 필요한 기술로 인식되고 있다. 과거 다양한 사람 움직임 추적 알고리즘들이 응용 프로그램의 특성에 따라 구현되고, 실시간성을 고려한 보다 효율적인 영상 처리, 컴퓨터 비전, 인터페이스 기술들을 적용하여 구현되고 있다. 본 논문에서는 타원체 형태의 신체 모델과 깊이값 정보를 갖는 3차원 점들과의 매칭을 통해 실시간으로 적용 가능한 움직임 추적 기술을 소개한다. 움직임 추적을 위한 기반 모델은 사람의 모습과 유사한 형태의 타원체 조합의 18개의 관절을 갖는 형태로 구성되어 지며, 영상으로부터 들어온 사람의 모습을 분석하여 일련의 신체 부위를 나누고, 그 정보를 바탕으로 역기구학 기반의 초기 자세를 추출한다. 초기 자세는 3차원 점 매칭 기법을 활용하여 보다 정확한 자세로 수정된다.

인간-컴퓨터 상호 작용을 위한 인간 팔의 3차원 자세 추정 - 기계요소 모델링 기법을 컴퓨터 비전에 적용 (3D Pose Estimation of a Human Arm for Human-Computer Interaction - Application of Mechanical Modeling Techniques to Computer Vision)

  • 한영모
    • 전자공학회논문지SC
    • /
    • 제42권4호
    • /
    • pp.11-18
    • /
    • 2005
  • 인간은 의사 표현을 위해 음성언어 뿐 아니라 몸짓 언어(body languages)를 많이 사용한다 이 몸짓 언어 중 대표적인 것은, 물론 손과 팔의 사용이다. 따라서 인간 팔의 운동 해석은 인간과 기계의 상호 작용(human-computer interaction)에 있어 매우 중요하다고 할 수 있다. 이러한 견지에서 본 논문에서는 다음과 같은 방법으로 컴퓨터비전을 이용한 인간팔의 3차원 자세 추정 방법을 제안하다. 먼저 팔의 운동이 대부분 회전 관절(revolute-joint)에 의해 이루어진다는 점에 착안하여, 컴퓨터 비전 시스템을 활용한 회전 관절의 3차원 운동 해석 기법을 제안한다. 이를 위해 회전 관절의 기구학적 모델링 기법(kinematic modeling techniques)과 컴퓨터 비전의 경사 투영 모델(perspective projection model)을 결합한다. 다음으로, 회전 관절의 3차원 운동해석 기법을 컴퓨터 비전을 이용한 인간 팔의 3차원 자세 추정 문제에 웅용한다. 그 기본 발상은 회전 관절의 3차원 운동 복원 알고리즘을 인간 팔의 각 관절에 순서 데로 적용하는 것이다. 본 알고리즘은 특히 유비쿼터스 컴퓨팅(ubiquitous computing)과 가상현실(virtual reality)를 위한 인간-컴퓨터 상호작용(human-computer interaction)이라는 응용을 목표로, 고수준의 정확도를 갖는 폐쇄구조 형태(closed-form)의 해를 구하는데 주력한다.

순차적 파티클 필터를 이용한 다중증거기반 얼굴추적 (Probabilistic Head Tracking Based on Cascaded Condensation Filtering)

  • 김현우;기석철
    • 로봇학회논문지
    • /
    • 제5권3호
    • /
    • pp.262-269
    • /
    • 2010
  • This paper presents a probabilistic head tracking method, mainly applicable to face recognition and human robot interaction, which can robustly track human head against various variations such as pose/scale change, illumination change, and background clutters. Compared to conventional particle filter based approaches, the proposed method can effectively track a human head by regularizing the sample space and sequentially weighting multiple visual cues, in the prediction and observation stages, respectively. Experimental results show the robustness of the proposed method, and it is worthy to be mentioned that some proposed probabilistic framework could be easily applied to other object tracking problems.

칼만 필터와 가중탐색영역 CAMShift를 이용한 휴먼 바디 트래킹 및 자세추정 (Human Body Tracking and Pose Estimation Using CamShift Based on Kalman Filter and Weighted Search Windows)

  • 민재홍;김인규;황승준;백중환
    • 한국항행학회논문지
    • /
    • 제16권3호
    • /
    • pp.545-552
    • /
    • 2012
  • 본 논문에서는 사람의 신체 일부분을 추적하는 시스템을 위해서 피부영역을 추출하고 여러 개의 영역을 추적하는 칼만 필터와 가중 탐색 영역을 이용한 다중 CAMShift 알고리즘(KWMCAMShift)을 제안한다. 배경모델을 구성하고 손과 얼굴의 피부색영역을 탐색 영역으로 하는 CAMShift를 제안한다. 이때 CAMShift의 유동적인 탐색영역을 안정화하기 위해 칼만 필터를 이용한다. 손과 얼굴 등이 상호 겹쳐지는 경우 탐색영역의 손실을 막기 위해 주 탐색영역과 비 탐색영역에 대한 가중치를 부가하여 서로 폐색 영역에 대한 회피 알고리즘을 제안한다. 얼굴 영역과 양손의 영역을 중심으로 인간의 자세를 추정하여 어깨와 손과의 관계로 팔꿈치를 추정하였고, 가우시안 배경 모델에 생성되는 그림자를 제거하여 발끝을 찾아 신체 전체를 추정하였다. 제안된 KWMCAMShift 알고리즘을 적용하였을 때 폐색 시에도 96.82%의 인식률을 보였으며 실시간이 가능하였다.

누적 히스토그램과 랜덤 포레스트를 이용한 머리방향 추정 (Head Pose Estimation with Accumulated Historgram and Random Forest)

  • 문성희;이칠우
    • 스마트미디어저널
    • /
    • 제5권1호
    • /
    • pp.38-43
    • /
    • 2016
  • 스마트 환경 구축이 보편화됨에 따라 사람과 컴퓨터 사이의 상호작용(HCI)에 관한 연구가 활발히 진행되고 있다. 인간-컴퓨터 상호작용에서 사람의 얼굴과 시선 방향을 안다는 것은 그 사람의 의도나 관심의 대상을 파악하는데 중요한 정보를 제공할 뿐만 아니라 신체 구조를 이해하는데도 하나의 기준이 될 수 있으므로 중요한 연구 테마이다. 본 논문에서는 랜덤 포레스트를 이용하여 얼굴 방향을 미리 정해놓은 각도로 분류하는 방법을 제안한다. 먼저 영상은 전처리를 거친 뒤 회전정보를 얻기 위하여 평균 정면 얼굴과의 차영상을 이용하여 회전정보를 추출한다. 캐니에지 검출법을 이용하여 얼굴의 특징을 검출하고 이를 이용하여 에지 영상을 구한 뒤, 이 영상에 대해 가로 세로축 각각에 대해 픽셀 수를 누적하여 히스토그램을 작성한다. 누적히스토그램을 특징으로 랜덤 포레스트를 생성하였으며, 랜덤 포레스트의 학습과 테스트에는 CAS-PEAL-R1 데이터를 사용하여 80.6%의 인식률을 얻었다.

인간 행동 분석을 이용한 위험 상황 인식 시스템 구현 (A Dangerous Situation Recognition System Using Human Behavior Analysis)

  • 박준태;한규필;박양우
    • 한국멀티미디어학회논문지
    • /
    • 제24권3호
    • /
    • pp.345-354
    • /
    • 2021
  • Recently, deep learning-based image recognition systems have been adopted to various surveillance environments, but most of them are still picture-type object recognition methods, which are insufficient for the long term temporal analysis and high-dimensional situation management. Therefore, we propose a method recognizing the specific dangerous situation generated by human in real-time, and utilizing deep learning-based object analysis techniques. The proposed method uses deep learning-based object detection and tracking algorithms in order to recognize the situations such as 'trespassing', 'loitering', and so on. In addition, human's joint pose data are extracted and analyzed for the emergent awareness function such as 'falling down' to notify not only in the security but also in the emergency environmental utilizations.

편향된 다양체 학습 기반 시점 변화에 강인한 인체 포즈 추정 (View-Invariant Body Pose Estimation based on Biased Manifold Learning)

  • 허동철;이성환
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권11호
    • /
    • pp.960-966
    • /
    • 2009
  • 다양체는 고차원 표본 데이터들 사이의 관계를 표현하기 위해 저차원 공간에서 생성된 구조로서 고차원 데이터인 영상과 3차원 인체 구성 데이터를 처리하는데 많이 사용되고 있다. 다양체 학습은 이러한 다양체를 생성하는 과정을 말한다. 그러나 다양체 학습을 이용한 포즈 추정은 학습하지 못한 실루엣 변화에 취약하다. 실루엣 변화는 2차원 영상에서 시점 변화, 포즈 변화, 사람 변화, 거리 변화, 잡영에 의해 발생되며, 이러한 변화를 하나의 다양체로 학습하기란 어렵다. 본 논문에서는 실루엣 변화를 유발하는 문제중 하나인 시점 변화에 대한 문제를 해결하고자 한다. 종래에 시점 변화에 상관 없이 포즈를 추정하는 방법에서는, 각 시점마다 다양체를 가지거나 사상 함수에서 시점에 관련한 요소들을 분리하석 별도의 다양체로 학습한다. 하지만 이러한 방법들은 복잡하고, 추정 과정에서 어떠한 시점의 다양체를통해 포즈를 추정할지 판단을 요구하며, 비교사 학습으로 인해 실루엣과 대응되는 3차원 인체 구성을 지정하기 어렵다. 본 논문에서는 시점 다양체, 포즈 다양체, 인체 구성 다양체를 편향된 다양체로 학습하여 사용하는 방법을 제안한다. 그리고 영상과 시점 다양체, 영상과 포즈 다양체, 인체 구성과 인체 구성 다양체, 포즈 다양체와 인체 구성 다양체 간에 사상 함수를 학습한다. 실험에서는 학습된 다양체와 사상 함수를 이용하여 24개의 시점에서 강인한 포즈 추정 결과를 보여주고 있다.

RGB-D 정보를 이용한 객체 탐지 기반의 신체 키포인트 검출 방법 (A Method for Body Keypoint Localization based on Object Detection using the RGB-D information)

  • 박서희;전준철
    • 인터넷정보학회논문지
    • /
    • 제18권6호
    • /
    • pp.85-92
    • /
    • 2017
  • 최근 영상감시 분야에서는 영상에서 움직이는 사람을 탐지하고, 탐지된 사람의 행위를 분석하는 방식에 딥러닝 기반 학습방법이 적용되기 시작했다. 이러한 지능형 영상분석 기술을 적용할 수 있는 분야 중 하나인 인간 행위 인식은 객체를 탐지하고 탐지된 객체의 행위를 인식하기 위해 신체 키포인트를 검출 하는 과정을 거치게 된다. 본 논문에서는 RGB-D 정보를 이용한 객체 탐지 기반의 신체 키포인트 검출 방법을 제시한다. 먼저, 두 대의 카메라로 생성된 색상정보와 깊이정보를 이용하여 이동하는 객체를 배경으로부터 분할하여 탐지한다. RGB-D 정보를 이용하여 탐지된 객체의 영역을 재조정하여 생성된 입력 데이터를 한 사람의 자세 추정을 위한 Convolutional Pose Machines(CPM)에 적용한다. CPM을 이용하여 한 사람당 14개의 신체부위에 대한 신념 지도(Belief Map)를 생성하고, 신념 지도를 기반으로 신체 키포인트를 검출한다. 이와 같은 방법은 키포인트를 검출할 객체에 대한 정확한 영역을 제공하게 되며, 개별적인 신체 키포인트의 검출을 통하여 단일 신체 키포인트 검출에서 다중 신체 키포인트 검출로 확장 할 수 있다. 향후, 검출된 키포인트를 이용하여 인간 자세 추정을 위한 모델을 생성할 수 있으며 인간 행위 인식 분야에 기여 할 수 있다.

Facial Feature Tracking and Head Orientation-based Gaze Tracking

  • Ko, Jong-Gook;Kim, Kyungnam;Park, Seung-Ho;Kim, Jin-Young;Kim, Ki-Jung;Kim, Jung-Nyo
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -1
    • /
    • pp.11-14
    • /
    • 2000
  • In this paper, we propose a fast and practical head pose estimation scheme fur eye-head controlled human computer interface with non-constrained background. The method we propose uses complete graph matching from thresholded images and the two blocks showing the greatest similarity are selected as eyes, we also locate mouth and nostrils in turn using the eye location information and size information. The average computing time of the image(360*240) is within 0.2(sec) and we employ template matching method using angles between facial features for head pose estimation. It has been tested on several sequential facial images with different illuminating conditions and varied head poses, It returned quite a satisfactory performance in both speed and accuracy.

  • PDF