• 제목/요약/키워드: Human periodontal ligament cell

검색결과 136건 처리시간 0.03초

녹용이 치주인대세포의 세포주기조절에 미치는 영향 (Effects of Cervi Parvum Cornu on the Cell Cycle Regulation in Human Periodontal Ligament Cells)

  • 유승한;최희인;김현아;김윤상;신형식;유형근
    • 동의생리병리학회지
    • /
    • 제17권1호
    • /
    • pp.157-164
    • /
    • 2003
  • Cervi Parvum Cornu(CPC) is that the young horn of deer family and has been traditionally used as a medicine in Eastern. The purpose of present study was to investigate the effects of CPC on cell cycle progression and its molecular mechanism in human periodontal ligament cells (HPOLC). In cell proliferation assay, 1 ng/ml, 10 ng/ml, 100 ng/ml, 1 ㎍/ml and 10 ㎍/ml of CPC were used, all treatment groups increased the cell growth. Maximal cell proliferation was observed in cells exposed to 100 ng/ml of CPC at 4 day, and 10 ng/ml and 100 ng/ml of CPC at 6 days. S phase was increased and G1 phase was decreased in the group treated with 100 ng/ml of CPC in cell cycle analysis. The protein levels of cyclin D1 were not changed, but the levels of cyclin E, cdk 2, cdk 4 and cdk 6 were increased. The protein levels of p21, pRb were decreased as compared to that of control group, but the levels of p53 was not changed in the cells both treated with CPC Md untreated. These results suggested that CPC increases the cell proliferation and cell cycle progression in HPDLC, which is linked to an increased cellular levels of cyclin E, cdk 2, cdk 4 and cdk 6, and decreased the levels of p53, p21.

Cyclic tensile stress inhibits Wnt/${\beta}$-catenin signaling in human periodontal ligament cells

  • Kim, Ji-Young;Yang, Daum;Kim, Ha-Neui;Jung, Kyoung-Suk;Chang, Young-Il;Lee, Zang-Hee
    • International Journal of Oral Biology
    • /
    • 제34권2호
    • /
    • pp.53-59
    • /
    • 2009
  • Periodontal ligament (PDL) tissue is a connective tissue that is interposed between the roots of the teeth and the inner wall of the alveolar bone socket. PDL is always exposed to physiologic mechanical force such as masticatory force and PDL cells play important roles during orthodontic tooth movement by synthesizing and secreting different mediators involved in bone remodeling. The Wnt/${\beta}$-catenin signaling pathway was recently shown to play a significant role in the control of bone formation. In the present study, we applied cyclic tensile stress of 20% elongation to cultured human PDL cells and assessed its impact after six days upon components of the Wnt/${\beta}$-catenin signaling pathway. RTPCR analysis showed that Wnt1a, Wnt3a, Wnt10b and the Wnt receptor LRP5 were down-regulated, whereas the Wnt inhibitor DKK1 was up-regulated in response to these stress conditions. In contrast, little change was detected in the mRNA expression of Wnt5a, Wnt7b, Fz1, and LRP6. By western blotting we found decreased expression of the ${\beta}$-catenin and p-GSK-3${\beta}$ proteins. Our results thus show that mechanical stress suppresses the canonical Wnt/${\beta}$-catenin signaling pathway in PDL cells.

The effects of dexamethasone on the apoptosis and osteogenic differentiation of human periodontal ligament cells

  • Kim, Sung-Mi;Kim, Yong-Gun;Park, Jin-Woo;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • 제43권4호
    • /
    • pp.168-176
    • /
    • 2013
  • Purpose: The purpose of the current study was to examine the effect of dexamethasone (Dex) at various concentrations on the apoptosis and mineralization of human periodontal ligament (hPDL) cells. Methods: hPDL cells were obtained from the mid-third of premolars extracted for orthodontic reasons, and a primary culture of hPDL cells was prepared using an explant technique. Groups of cells were divided according to the concentration of Dex (0, 1, 10, 100, and 1,000 nM). A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed for evaluation of cellular viability, and alkaline phosphatase activity was examined for osteogenic differentiation of hPDL cells. Alizarin Red S staining was performed for observation of mineralization, and real-time polymerase chain reaction was performed for the evaluation of related genes. Results: Increasing the Dex concentration was found to reduce cellular viability, with an increase in alkaline phosphatase activity and mineralization. Within the range of Dex concentrations tested in this study, 100 nM of Dex was found to promote the most vigorous differentiation and mineralization of hPDL cells. Dex-induced osteogenic differentiation and mineralization was accompanied by an increase in the level of osteogenic and apoptosis-related genes and a reduction in the level of antiapoptotic genes. The decrease in hPDL cellular viability by glucocorticoid may be explained in part by the increased prevalence of cell apoptosis, as demonstrated by BAX expression and decreased expression of the antiapoptotic gene, Bcl-2. Conclusions: An increase in hPDL cell differentiation rather than cellular viability at an early stage is likely to be a key factor in glucocorticoid induced mineralization. In addition, apoptosis might play an important role in Dex-induced tissue regeneration; however, further study is needed for investigation of the precise mechanism.

구연산과 테트라싸이클린으로 처리한 치근면에서 rhBMP-2가 치주인대섬유아세포와 골아세포의 활성에 미치는 영향 (Effect of Citric Acid and Tetracycline HCl Root Conditioning on rhBMP-2 on Human Periodontal Ligament Fibroblast and Osteoblast cell)

  • 심정민;한수부;설양조;이용무;김경화;계승범;최상묵;정종평
    • Journal of Periodontal and Implant Science
    • /
    • 제31권1호
    • /
    • pp.21-41
    • /
    • 2001
  • The goal of Periodontal treatment is predictable periodontal regeneration. But until now, many products including GTR materials and growth factors are beyond of complete regeneration. BMP can induce ectopic bone formation when implanted into sites such as rat muscle and can greatly enhance healing of bony defects when applied exogenously. BMP can promote periodontal regeneration by their ability to stimulate new bone and new cementum formation. But little is known about optimal conditions required for the application. Root conditioning is used for bioacive root change so altered root surface provides a substrate that promotes chemotaxis, migration and attachment of peridontal cells encouraging connective attachment to the denuded root surface. The aim of this study is to investigate whether the acid conditioning change effect of rhBMP-2 on human periodontal ligament cell and osteoblast cell line. 288 periodontally involved root dentin slices are divided into 6 groups, each 48, 1)control, 2)treated with BMP, 3)treated with citric acid 4)treated with citric acid+BMP 5)treated with tetracycline 6)treated with TC+BMP. Each group was devided half, so 12 root dentin slices were seeded with periodontal ligament cells and 12 were seeded with osteoblasts. At day 2 and 7, cell number, protein assay, ALP activitiy was measured. To investigate morphology of cultured cells, SEM was employed. Statistical analysis was performed with SPSS 8.0 either t-test or ANOVA test. The results are ; Protein assay and cell number was slightly decreased in CA+BMP group compared to Ca group but it was not statistically significant and ALP activity was much more increased in CA+BMP group compared to CA group so there was no statistically significance between BMP and CA+BMP group and statistically significant compared to control group. Cell number and protein assay was slightly increased in TC group and ALP activity was much less the BMP group and CA group. Cell number and protein and ALP activity was not much increased in TC+BMP group. TC group and TC+BMP group showed cell morphology change in SEM. This results suggested that application of root surface with citric acid before BMP treatment might give better result in periodontal regeneration.

  • PDF

치주인대세포의 골모세포 분화에서 NFATc1의 역할 (The Role of NFATc1 on Osteoblastic Differentiation in Human Periodontal Ligament Cells)

  • 이상임
    • 치위생과학회지
    • /
    • 제15권4호
    • /
    • pp.488-494
    • /
    • 2015
  • 치주인대세포의 효과적인 조절은 성공적인 치주 조직 재생에 중요한 역할을 한다. NFATc1의 활성화가 골모세포에서 분화를 자극하지만, 치주인대세포가 골모세포로 분화하는 과정에서 NFATc1의 역할은 아직 보고되지 않았다. 본 연구는 hPDLCs가 골모세포로 분화하는 동안 NFATc1의 mRNA의 발현과 단백질 발현이 유도됨을 처음으로 확인하였다. CsA에 의한 NFATc1의 억제는 세포증식을 감소시켰다. 게다가, CsA를 처리한 결과, 분화표지자, ALP activity 및 광화결정형성을 감소시켰다. 이러한 연구 결과는 NFATc1이 치주 재생을 위한 골모세포 분화에 중요한 조절자 역할을 할 수 있을 것으로 생각된다.

Static tensional forces increase osteogenic gene expression in three-dimensional periodontal ligament cell culture

  • Ku, Seung-Jun;Chang, Young-Il;Chae, Chang-Hoon;Kim, Seong-Gon;Park, Young-Wook;Jung, Youn-Kwan;Choi, Je-Yong
    • BMB Reports
    • /
    • 제42권7호
    • /
    • pp.427-432
    • /
    • 2009
  • Orthodontic tooth movement results from the combinational process of both bone resorption and formation in the compressive and tension sides, respectively. However, the genes responsible for new bone formation in tension sides have not been determined. In this study, we used DNA microarray and real-time RT-PCR to identify genes in human periodontal ligament (PDL) cells that undergo significant changes in expression in response to static tensional forces (2 or 12 hours). The genes found were alkaline phospatase (ALP), matrix metalloproteinases (MMPs), vascular endothelial growth factor (VEGF), and several collagen genes. Furthermore, an ELISA evaluating the expression of VEGF, type IV collagen and MMP-2 found levels significantly increased after 24 and 72 hours (P < 0.05). ALP activity was also increased after 24 hours (P < 0.05). Collectively, we found the genes up-regulated in our study by the static tensional force are related to osteogenic processes such as matrix synthesis and angiogenesis.

치은섬유아세포와 치주인대섬유아세포의 interleukin-6 분비 및 세포성장에 미치는 단핵구세포주와 섬유아세포의 세포간 접촉작용 (Effects of Direct Cell Contact Between Monocytes and Fibroblasts on the Interleukin-6 Production and Cell Proliferation of Human Gingival and Peri - odontal Ligament Fibroblasts)

  • 김수아;이호;김형섭;오귀옥
    • Journal of Periodontal and Implant Science
    • /
    • 제29권4호
    • /
    • pp.803-823
    • /
    • 1999
  • In order to reveal immunopathogenesis of periodontal tissue destruction, it is important to clarify the molecular mechanism of trafficking and retention of activated leukocytes, including monocytes/macrophages. Gingival fibroblasts may be involved in the regulation of inflammatory cell accumulation in the extravascular periodontal connective tissues via cytokine production and surface expression of adhesion molecules. In this study, it was investigated the molecular basis for the adhesive interactions between monocytes and fibroblasts such as peri-odontal ligament fibroblast(PDLF), human gingival fibroblast(HGF), and human dermal fibroblast(HDF). First, it was examined the evidence whether monocyte-fibroblast cell contact may cause signal transduction in fibroblasts. Being directly in contact with fixed human monocyte cell line THP-1, or U937, upregulation of IL-6 production, $TNF-{\alpha}$ mRNA expression and increased cell proliferation could be seen for fibroblasts. IL-6 production induced by monocyte- fibroblast coculture were further increased when fibroblasts had been pretreated with $IFN-{\gamma}$ or $IL-1{\beta}$ , and monocytes with LPS. Next, it was examined the expression of ICAM-1 which has been known to be involved in accumulation and activation of leukocytes in inflammatory diseases such as periodontitis. ICAM-1 was upregulated up to 10-fold on PDLF, HGF, and HDF by exposure to $IFN-{\gamma}$ or $IL-1{\beta}$. Furthermore, anti-ICAM-1 monoclonal antibody clearly blocked cocultureinduced IL-6 production by fibroblasts, suggesting that $ICAM-1/{\beta}_2$integrin pathway is involved in periodontal fibroblastmonocyte interaction. Overall, these findings provide evidence that periodontal fibroblasts could be involved in the accumulation and retention of monocytes/macrophages in periodontal inflammatory lesion at least in part by ICAM-1 expression. In addition, periodontal fibroblast-monocyte interaction could cause activation signals in fibroblasts intracellularly which result in cytokine production and cell proliferation. Thus, periodontal fibroblasts are speculated to play an important role in immunoregulation and tissue destruction in chronic periodontal diseases by interaction with monocytes/macrophages.

  • PDF