• Title/Summary/Keyword: Human norovirus

Search Result 32, Processing Time 0.074 seconds

Pathogenesis of Human Norovirus Genogroup II Genotype 4 in Post-Weaning Gnotobiotic Pigs

  • Park, Byung-Joo;Jung, Soon-Tag;Choi, ChangSun;Myoung, Jinjong;Ahn, Hee-Seop;Han, Sang-Hoon;Kim, Yong-Hyun;Go, Hyeon-Jeong;Lee, Joong-Bok;Park, Seung-Yong;Song, Chang-Seon;Lee, Sang-Won;Choi, In-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.12
    • /
    • pp.2133-2140
    • /
    • 2018
  • Norovirus is the most common cause of acute gastroenteritis. Its pathogenesis is poorly understood owing to the difficulty of establishing viral infection in animal models. Here, post-weaning gnotobiotic pigs were infected with human norovirus genogroup II genotype 4 (HuNoV GII.4) to investigate the pathogenesis and replication of the virus. Three groups of four pigs were infected with $1{\times}10^5$, $1{\times}10^6$, or $1{\times}10^7$ genomic equivalent (GE) copies of HuNoV GII.4. Four pigs were used as negative controls. Blood and rectal swab samples were collected after viral infection, and gross legions were examined after necropsy. Diarrhea was induced in 25% and 75% of pigs infected with $1{\times}10^6$ and $1{\times}10^7$ GE copies, respectively. Viral shedding was detected in 50%, 75%, and 50% of pigs infected with $1{\times}10^5$, $1{\times}10^6$, and $1{\times}10^7$ GE copies, respectively. Viremia was detected in 25% of pigs infected with either $1{\times}10^6$ or $1{\times}10^7$ GE copies. When gross lesions of gastroenteritis were investigated, the ileum walls of the infected pigs were thinner than those of the controls. Villi atrophy and inflammatory cell infiltration were identified in the ileum of each infected pig. Viral capsid was identified in the jejunum, ileum, colon, spleen, and mesenteric lymph node. Virus replication was newly verified in the spleen and mesenteric lymph nodes by detection of negative-sense viral RNA. In conclusion, HuNoV GII.4 could induce acute gastroenteritis and replicate in the extra-intestinal lymphoid tissues in post-weaning gnotobiotic pigs. Therefore, such pigs would be a suitable animal model for studying the pathogenesis and replication of HuNoV.

Correlation between Changes in Microbial/Physicochemical Properties and Persistence of Human Norovirus during Cabbage Kimchi Fermentation

  • Lee, Hee-Min;Lee, Ji-Hyun;Kim, Sung Hyun;Yoon, So-Ra;Lee, Jae Yong;Ha, Ji-Hyoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.11
    • /
    • pp.2019-2027
    • /
    • 2017
  • Recently, cabbage kimchi has occasionally been associated with the foodborne diseases of enteric viruses such as human norovirus (HuNoV). This study aimed to evaluate the correlation between microbial/physicochemical properties and persistence of HuNoV in experimentally contaminated cabbage kimchi fermented and stored at $4^{\circ}C$ or $10^{\circ}C$ for 28 days. Changes in organic acid content, lactic acid bacteria (LAB), acidity, pH, and salinity were analyzed. The recovery of structurally intact HuNoV was examined for up to 28 days post-inoculation, using a NoV GII.4 monoclonal antibody-conjugated immuno-magnetic separation method combined with quantitative real-time reverse transcription polymerase chain reaction. On day 0, LAB loads were $4.70log_{10}$ colony forming units/g and HuNoV GII.4 titers were $2.57log_{10}\;genomic\;copies/{\mu}l$, at both temperatures. After 28 days, intact HuNoV titers decreased to 1.58 ($4^{\circ}C$) and $1.04(10^{\circ}C)log_{10}\;genomic\;copies/{\mu}l$, whereas the LAB density increased. This correlated with a gradual increase in lactic acid and acetic acid at both temperatures. Our findings support a statistical correlation between changes in physicochemical properties and the recovery of structurally intact HuNoV GII.4. Moreover, we determined that the production of organic acid and low pH could affect HuNoV GII.4 titers in cabbage kimchi during fermentation. However, HuNoV GII.4 was not completely eliminated by microbial/physicochemical factors during fermentation, although HuNoV GII.4 was reduced. Based on this, we speculate that the persistence of HuNoV GII.4 may be affected by the continually changing conditions during kimchi fermentation.

Recent (2010-2019) foodborne outbreaks caused by viruses in the Republic of Korea along with their detection and inactivation methods (바이러스에 의한 최근(2010-2019) 국내 식중독 사고와 검출법 및 제어법에 대한 동향 조사)

  • Kwon, Seung-Wook;Kim, Sang-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • In this review, recent foodborne outbreaks caused by viruses in the Republic of Korea (2010-2019) were analyzed. The human norovirus was found to be the major foodborne virus causing an average of 94.9% of the viral outbreaks. Reverse-transcription polymerase chain reaction (PCR) with electrophoresis has been widely used to detect viruses, but several rapid detection methods, including real-time PCR, multiplex PCR, and quantum dot assay, have also been suggested. For norovirus inactivation studies, surrogates such as murine norovirus and feline calicivirus have been widely used to identify the reduction rate owing to the limitations in laboratory cultivation. Conversely, direct cell infection studies have been conducted for other foodborne viruses such as adenovirus, astrovirus, rotavirus, and hepatitis A or E virus. Moreover, virucidal mechanisms using various physical and chemical treatments have been revealed. These recent studies suggest that rapid in situ detection and effective control are valuable for ensuring food safety against viral infections.

Ginseng, the natural effectual antiviral: Protective effects of Korean Red Ginseng against viral infection

  • Im, Kyungtaek;Kim, Jisu;Min, Hyeyoung
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.309-314
    • /
    • 2016
  • Korean Red Ginseng (KRG) is a heat-processed ginseng developed by the repeated steaming and air-drying of fresh ginseng. Compared with fresh ginseng, KRG has been shown to possess greater pharmacological activities and stability because of changes that occur in its chemical constituents during the steaming process. In addition to anticancer, anti-inflammatory, and immune-modulatory activities, KRG and its purified components have also been shown to possess protective effects against microbial infections. Here, we summarize the current knowledge on the properties of KRG and its components on infections with human pathogenic viruses such as respiratory syncytial virus, rhinovirus, influenza virus, human immunodeficiency virus, human herpes virus, hepatitis virus, norovirus, rotavirus, enterovirus, and coxsackievirus. Additionally, the therapeutic potential of KRG as an antiviral and vaccine adjuvant is discussed.

Occurrence and Molecular Characterization of Noroviruses in Korean Surface Water Between 2007 and 2010

  • Lee, Gyu-Cheol;Kim, Min-Jeong;Kim, Jong Ik;Lee, Chan Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.4
    • /
    • pp.556-562
    • /
    • 2014
  • The occurrence of human norovirus (NoV) genogroup I (GI) and genogroup II (GII) strains was investigated in Korea. Between 2007 and 2010, 265 samples were collected from 89 Korean water source locations. NoV GI was detected in 4.5% and NoV GII in 1.5%. Samples collected in winter had the highest occurrence; 9.4% for NoV GI and 6.3% for NoV GII. NoV GI detection was highest in groundwater, with the next highest in river water and the lowest in lake water (5.9%, 5.4%, and 1.6%, respectively), and NoV GII was found only in river water. When three representative Korean basin systems (Han (H)-, Geum/Seom (G/S)-, and Nakdong (N)-river basins) were compared, both NoV genogroups were high in the G/S-, but absent in the H- river basin. The most prevalent genotypes within the GI and GII groups were GI.5 and GII.4, respectively. The NoVs found in surface water were identical to those found in patients and those found in groundwater. The NoVs appeared to be transmitted from the patient to the surface water, and then to the groundwater, suggesting a fecal-oral route of transmission. This is the first nationwide surveillance of NoV in major Korean water sources.

Molecular Characterization of a Korean Isolate of Human Norovirus, the Hu/NLV/Gunpo/2006/KO Strain (인체 노로바이러스의 한국분리주 Hu/NLV/Gunpo/2006/KO의 분자생물학적 특성)

  • Jeong, Ah-Yong;Yun, Sang-Im;Jee, Young-Mee;Kang, Yoon-Sung;Lee, Young-Min
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.105-111
    • /
    • 2009
  • Norovirus (NV) with a variety of genotypes, a member of the family Caliciviridae, causes acute nonbacterial gastroenteritis in humans. We determined the nucleotide sequence of three open reading frames (ORFs) of a NV Korean strain and characterized the genetic relationship with others. The Korean strain designated Hu/NLV/Gunpo/2006/KO was isolated from the stool specimen of a 2-year-old female suffering from gastroenteritis. By performing reverse transcription and PCR amplification, three overlapping cDNAs were synthesized and used for direct sequencing. We found that like other NVs, this strain contains three ORFs: ORF1, 5,100 bp; ORF2, 1,647 bp; ORF3, 765 bp. Of 35 NVs, ORF1 had a level of genetic diversity lower than ORF2 and ORF3, of which the C-termini of the ORF2 and ORF3 showed a relatively high degree of genetic diversity. Phylogenetic analyses indicated that the Korean strain belonged to genogroup II, with Saitama U1, Gifu'96, Mc37, and Vietnam 026 being formed a single genetic cluster. The nucleotide sequence information of three ORFs of a NV Korean isolate will be useful not only for the development of a diagnostic tool and understanding of genetic relationship, but also provide important basic information for the functional analysis of their gene products.

Elution Buffers for Human Enteric Viruses in Vegetables with Applications to Norovirus Detection

  • Moon, Aerie;Ahn, Jaehyun;Choi, Weon Sang
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.4
    • /
    • pp.287-292
    • /
    • 2013
  • The efficient elution of viruses from contaminated food is a critical step for its detection. In this study, conditions optimal for enteric viral recovery from three leafy vegetables (cabbage, lettuce, sesame leaf) and three root vegetables (carrot, onion, mooli) were analyzed to find common buffers (statistically not different) applicable to the leafy and root vegetables. Viral recovery varied depending on the food matrices or elution buffers. Buffer solutions containing 0.25M threonine / 0.3M NaCl (pH 9.5) or 0.25M glycine / 0.14M NaCl (pH 9.5) could efficiently recover poliovirus from five out of six vegetables. The threonine buffer was applied to one leafy vegetable (sesame) and one root vegetable (carrot) for genogroup II norovirus (NoV) detection. The detection sensitivity was significantly higher from the leafy vegetable compared to the root vegetable. The use of these common elution buffers should facilitate the detection of low levels of NoV and other enteric viruses in a wide range of vegetables.

Human Norovirus Replication in Temperature-Optimized MDCK Cells by Forkhead Box O1 Inhibition

  • Jeong, Eun-Hye;Cho, Se-Young;Vaidya, Bipin;Ha, Sang Hoon;Jun, Sangmi;Ro, Hyun-Joo;Lee, Yujeong;Lee, Juhye;Kwon, Joseph;Kim, Duwoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1412-1419
    • /
    • 2020
  • Human noroviruses (HuNoVs) are a leading cause of gastroenteritis outbreaks worldwide. However, the paucity of appropriate cell culture models for HuNoV replication has prevented developing effective anti-HuNoV therapies. In this study, first, the replication of the virus at various temperatures in different cells was compared, which showed that lowering the culture temperature from 37℃ significantly increased virus replication in Madin-Darby canine kidney (MDCK) cells. Second, the expression levels of autophagy-, immune-, and apoptosis-related genes at 30℃ and 37℃ were compared to explore factors affecting HuNoV replication. HuNoV cultured at 37℃ showed significantly increased autophagy-related genes (ATG5 and ATG7) and immune-related genes (IFNA, IFNB, ISG15, and NFKB) compared to mock. However, the virus cultured at 30℃ showed significantly decreased expression of autophagy-related genes (ATG5 and ATG7), but not significantly different major immune-related genes (IFNA, ISG15, and NFKB) compared to mock. Importantly, expression of the transcription factor FOXO1, which controls autophagy- and immune-related gene expression, was significantly lower at 30℃. Moreover, FOXO1 inhibition in temperature-optimized MDCK cells enhanced HuNoV replication, highlighting FOXO1 inhibition as an approach for successful virus replication. In the temperature-optimized cells, various HuNoV genotypes were successfully replicated, with GI.8 showing the highest replication levels followed by GII.1, GII.3, and GII.4. Furthermore, ultrastructural analysis of the infected cells revealed functional HuNoV replication at low temperature, with increased cellular apoptosis and decreased autophagic vacuoles. In conclusion, temperature-optimized MDCK cells can be used as a convenient culture model for HuNoV replication by inhibiting FOXO1 and providing adaptability to different genotypes.

Epidemiology of astrovirus infection in children

  • Jeong, Hye-Sook;Jeong, Ah-Yong;Cheon, Doo-Sung
    • Clinical and Experimental Pediatrics
    • /
    • v.55 no.3
    • /
    • pp.77-82
    • /
    • 2012
  • Human astrovirus (HAstV) is a major cause of acute diarrhea among children, resulting in outbreaks of diarrhea and occasionally hospitalization. Improved surveillance and application of sensitive molecular diagnostics have further defined the impact of HAstV infections in children. These studies have shown that HAstV infections are clinically milder (diarrhea, vomiting, fever) than infections with other enteric agents. Among the 8 serotypes of HAstV identified, serotype 1 is the predominant strain worldwide. In addition to serotype 1, the detection rate of HAstV types 2 to 8 has increased by using newly developed assays. HAstV is less common compared with other major gastroenteritis viruses, including norovirus and rotavirus; however, it is a potentially important viral etiological agent with a significant role in acute gastroenteritis. A better understanding of the molecular epidemiology and characteristics of HAstV strains may be valuable to develop specific prevention strategies.

Detection and genetic analysis of zoonotic hepatitis E virus, rotavirus, and sapovirus in pigs

  • Lyoo, Eu Lim;Park, Byung-Joo;Ahn, Hee-Seop;Han, Sang-Hoon;Go, Hyeon-Jeong;Kim, Dong-Hwi;Lee, Joong-Bok;Park, Seung-Yong;Song, Chang-Seon;Lee, Sang-Won;Choi, In-Soo
    • Korean Journal of Veterinary Research
    • /
    • v.60 no.2
    • /
    • pp.61-68
    • /
    • 2020
  • The zoonotic transmission of viral diseases to humans is a serious public health concern. Pigs are frequently a major reservoir for several zoonotic viral diseases. Therefore, periodic surveillance is needed to determine the infection rates of zoonotic diseases in domestic pigs. Hepatitis E virus (HEV), rotavirus, sapovirus (SaV), and norovirus (NoV) are potential zoonotic viruses. In this study, 296 fecal samples were collected from weaned piglets and growing pigs in 13 swine farms, and the viral RNA was extracted. Partial viral genomes were amplified by reverse transcription-polymerase chain reaction (PCR) or nested-PCR using virus-specific primer sets under different PCR conditions. HEV-3, rotavirus A, and SaV genogoup 3 were detected from 11.5, 2.7, and 3.0% of the samples, respectively. On the other hand, NoV was not detected in any of the samples. Genetic analysis indicated that the nucleotide sequences of swine HEV-3 and rotavirus A detected in this study were closely related to those of human isolates. However, swine SaV was distant from the human strains. These results suggest that HEV-3 and rotavirus A can be transmitted from pigs to humans. Therefore, strict preventive measures should be implemented by workers in the swine industry to prevent infections with HEV-3 and rotavirus A excreted from pigs.