Browse > Article

Molecular Characterization of a Korean Isolate of Human Norovirus, the Hu/NLV/Gunpo/2006/KO Strain  

Jeong, Ah-Yong (Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University)
Yun, Sang-Im (Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University)
Jee, Young-Mee (Division of Viral Hepatitis and Poliovirus, Center for Infectious Diseases, National Institute of Health)
Kang, Yoon-Sung (Department of Bio-Material, DNA Repair Research Center, Graduate School, Chosun University)
Lee, Young-Min (Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University)
Publication Information
Korean Journal of Microbiology / v.45, no.2, 2009 , pp. 105-111 More about this Journal
Abstract
Norovirus (NV) with a variety of genotypes, a member of the family Caliciviridae, causes acute nonbacterial gastroenteritis in humans. We determined the nucleotide sequence of three open reading frames (ORFs) of a NV Korean strain and characterized the genetic relationship with others. The Korean strain designated Hu/NLV/Gunpo/2006/KO was isolated from the stool specimen of a 2-year-old female suffering from gastroenteritis. By performing reverse transcription and PCR amplification, three overlapping cDNAs were synthesized and used for direct sequencing. We found that like other NVs, this strain contains three ORFs: ORF1, 5,100 bp; ORF2, 1,647 bp; ORF3, 765 bp. Of 35 NVs, ORF1 had a level of genetic diversity lower than ORF2 and ORF3, of which the C-termini of the ORF2 and ORF3 showed a relatively high degree of genetic diversity. Phylogenetic analyses indicated that the Korean strain belonged to genogroup II, with Saitama U1, Gifu'96, Mc37, and Vietnam 026 being formed a single genetic cluster. The nucleotide sequence information of three ORFs of a NV Korean isolate will be useful not only for the development of a diagnostic tool and understanding of genetic relationship, but also provide important basic information for the functional analysis of their gene products.
Keywords
genetic relationship; Hu/NLV/Gunpo/2006/KO; norovirus; sequencing;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Green, K.Y., T. Ando, M.S. Balayan, T. Berke, I.N. Clarke, M.K. Estes, D.O. Matson, S. Nakata, J.D. Neill, M.J. Studdert, and H-J. Thiel. 2000. Taxonomy of the Caliciviruses. J. Infect. Dis. 181, 322-330   DOI   ScienceOn
2 Holmes, E.C., L.Q. Zhang, P. Simmonds, C.A. Ludlam, and A.J. Brown. 1992. Convergent and divergent sequence evolution in the surface envelope glycoprotein of human immunodeficiency virus type 1 within a single infected patient. Proc. Natl. Acad. Sci. USA 89, 4835-4839   DOI   ScienceOn
3 Liu, B., I.N. Clarke, and P.R. Lambden. 1996. Polyprotein processing in Southamptonvirus: Identification of 3C-like protease cleavage sites by in vitro mutagenesis. J. Virol. 70, 2605-2610   PUBMED   ScienceOn
4 Page, R.D. 1996. TreeView: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12, 357-358   DOI   PUBMED   ScienceOn
5 Shioda, T., J.A. Levy, and C. Cheng-Mayer. 1992. Small amino acid changes in the V3 hypervariable region of gp120 can affect the T-cell-line and macrophage tropism of human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA 89, 9434-9438   DOI   ScienceOn
6 Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgins. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality tools. Nucleic Acids Res. 25, 4876-4882   DOI   ScienceOn
7 Ando, T., S.S. Monroe, J.R. Gentsch, Q. Jin, D.C. Lewis, and R.I. Glass. 1995. Detection and differentiation of antigenically distinct small round-structured viruses (Norwalk-like viruses) by reverse transcription-PCR and southern hybridization. J. Clin. Microbiol. 33, 64-71   PUBMED   ScienceOn
8 Hardy, M.E., S.F. Kramer, J.J. Treanor, and M.K. Estes. 1997. Human calicivirus genogroup II capsid sequence diversity revealed by analyses of the prototype Snow Mountain agent. Arch. Virol. 142, 1469-1479   DOI   ScienceOn
9 Someya, Y., N. Takeda, and T. Miyamura. 2000. Complete nucleotide sequence of the chibavirus genome and functional expression of the 3C-like protease in Escherichia coli. Virology 278, 490-500   DOI   ScienceOn
10 Green, S.M., K.E. Dingle, P.R. Lambden, E.O. Caul, C.R. Ashley, and I.N. Clarke. 1994. Human enteric Caliciviridae: a new prevalent small round-structured virus group defined by RNA-dependent RNA polymerase and capsid diversity. J. Gen. Virol. 75, 1883-1888   DOI   ScienceOn
11 Kaplan, J.E., G.W. Gary, R.C. Baron, N. Singh, L.B. Schonberger, R. Feldman, and H.B. Greenberg. 1982. Epidemiology of Norwalk gastroenteritis and the role of Norwalk virus in outbreaks of acute nonbacterial gastroenteritis. Ann. Intern. Med. 96, 756-761   DOI   PUBMED   ScienceOn
12 Saitou, N. and M. Nei. 1987. The neighbor-joining methods: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425   PUBMED   ScienceOn
13 Glass, R.I., J. Noel, T. Ando, R. Fankhauser, G. Belliot, A. Mounts, U.D. Parashar, J.S. Bresee, and S.S. Monroe. 2000. The epidemiology of enteric caliciviruses from humans: a reassessment using new diagnostics. J. Infect. Dis. 181, 254-261   DOI   ScienceOn
14 Kapikian, A.Z., R.G. Wyatt, R. Dolin, T.S. Thornhill, A.R. Kalica, and R.M. Chanock. 1972. Visualization by immune electron microscopy of a 27-nm particle associated with acute infectious nonbacterial gastroenteritis. J. Virol. 10, 1075-1081   PUBMED   ScienceOn
15 Thornton, A.C., K.S. Jenning-Conklin, and M.I. McCormick. 2004. Noroviruses: agents in outbreaks of acute gastroenteritis. Disaster Manag Res. 2, 4-9   DOI   ScienceOn
16 Kato, N., Y. Ootsuyama, S. Ohkoshi, T. Nakazawa, H. Sekiya, M. Hijikata, and K. Shimotohno. 1992. Characterization of hypervariable regions in the putative envelope protein of hepatitis C virus. Biochem. Biophys. Res. Commun. 189, 119-127   DOI   ScienceOn
17 Prasad, B.V., M.E. Hardy, T. Dokland, J. Bella, M.G. Rossmann, and M.K. Estes. 1999. X-ray crystallographic structure of the Norwalk virus capsid. Science 286, 287-290   DOI   PUBMED   ScienceOn
18 Lambden, P.R., B. Liu, and I.N. Clarke. 1995. A conserved sequence motif at the 5terminus of the Southampton virus genome is characteristic of the Caliciviridae. Virus Genes. 10, 149-152   DOI   ScienceOn
19 Greenberg, H.B., J. Valdesuso, R.H. Yoken, E. Gangarosa, W. Gary, R.G. Wyatt, T. Konno, H. Suzuki, R.M. Chanock, and A.Z. Kapikian. 1979 Role of Norwalk virus in outbreaks of nonbacterial gastroenteritis. J. Infect. Dis. 139, 564-568   DOI   PUBMED   ScienceOn
20 Seah, E.L., J.A. Marshall, and P.J. Wright. 1999. Open reading frame 1 of the Norwalk-like virus Camberwell: Completion of sequence and expression in mammalian cells. J. Virol. 73, 10531-10535   PUBMED   ScienceOn
21 Murray, C.J. and A.D. Lopez. 1997. Mortality by cause for eight regions of the world: Global burden of disease study. Lancet 349, 1269-1276   DOI   ScienceOn
22 Kato, N., H. Sekiya, Y. Ootsuyama, T. Nakazawa, M. Hijikata, S. Ohkoshi, and K. Shimotohno. 1993. Humoral immune response to hyper-variable region 1 of the putative envelope glycoprotein (gp70) of hepatitis C virus. J. Virol. 67, 3923-3930   PUBMED   ScienceOn
23 Kojima, S., T. Kageyama, S. Fukushi, F.B. Hoshino, M. Shinohara, K. Uchida, K. Natori, N. Takeda, and K. Katayama. 2002. Genogroup-specific PCR primers for detection of Norwalk-like viruses. J. Virol. Methods 100, 107-114   DOI   PUBMED   ScienceOn