• Title/Summary/Keyword: Human neuroblastoma cells

Search Result 154, Processing Time 0.039 seconds

Naringin Protects against Rotenone-induced Apoptosis in Human Neuroblastoma SH-SY5Y Cells

  • Kim, Hak-Jae;Song, Jeong-Yoon;Park, Hae-Jeong;Park, Hyun-Kyung;Yun, Dong-Hwan;Chung, Joo-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.4
    • /
    • pp.281-285
    • /
    • 2009
  • Rotenone, a mitochondrial complex I inhibitor, can induce the pathological features of Parkinson's disease (PD). In the present study, naringin, a grapefruit flavonoid, inhibited rotenone-induced cell death in human neuroblastoma SH-SY5Y cells. We assessed cell death and apoptosis by measuring mitogen-activated protein kinase (MAPKs) and caspase (CASPs) activities and by performing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, 4,6-diamidino-2-phenylindole (DAPI) staining, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. Naringin also blocked rotenone-induced phosphorylation of Jun NH2-terminal protein kinase (JNK) and P38, and prevented changes in B-cell CLL/lymphoma 2 (BCL2) and BCL2-associated X protein (BAX) expression levels. In addition, naringin reduced the enzyme activity of caspase 3 and cleavages of caspase 9, poly (ADP-ribose) polymerase (PARP), and caspase 3. These results suggest that naringin has a neuroprotective effect on rotenone-induced cell death in human neuroblastoma SH-SY5Y cells.

Effect of retinoic acid and delta-like 1 homologue (DLK1) on differentiation in neuroblastoma

  • Kim, Yu-Ri
    • Nutrition Research and Practice
    • /
    • v.4 no.4
    • /
    • pp.276-282
    • /
    • 2010
  • The principal objective of this study was to evaluate the chemopreventive and therapeutic effects of a combination of all-trans-retinoic acid (RA) and knockdown of delta-like 1 homologue (Drosophila) (DLK1) on neuroblastoma, the most common malignant disease in children. As unfavorable neuroblastoma is poorly differentiated, neuroblastoma cell was induced differentiation by RA or DLK1 knockdown. Neuroblastoma cells showed elongated neurite growth, a hallmark of neuronal differentiation at various doses of RA, as well as by DLK1 knockdown. In order to determine whether or not a combination of RA and DLK1 knockdown exerts a greater chemotherapeutic effect on neuroblastoma, cells were incubated at 10 nM RA after being transfected with SiRNA-DLK1. Neuronal differentiation was increased more by a combination of RA and DLK1 knockdown than by single treatment. Additionally, in order to assess the signal pathway of neuroblastoma differentiation induced by RA and DLK1 knockdown, treatment with the specific MEK/ERK inhibitors, U0126 and PD 98059, was applied to differentiated neuroblastoma cells. Differentiation induced by RA and DLK1 knockdown increased ERK phosphorylation. The MEK/ERK inhibitor U0126 completely inhibited neuronal differentiation induced by both RA and DLK1 knockdown, whereas PD98059 partially blocked neuronal differentiation. After the withdrawal of inhibitors, cellular differentiation was fully recovered. This study is, to the best of our knowledge, the first to demonstrate that the specific inhibitors of the MEK/ERK pathway, U0126 and PD98059, exert differential effects on the ERK phosphorylation induced by RA or DLK1 knockdown. Based on the observations of this study, it can be concluded that a combination of RA and DLK1 knockdown increases neuronal differentiation for the control of the malignant growth of human neuroblastomas, and also that both MEK1 and MEK2 are required for the differentiation induced by RA and DLK1 knockdown.

A Gammaherpesvirus Establishes Persistent Infection in Neuroblastoma Cells

  • Cho, Hye-Jeong;Song, Moon Jung
    • Molecules and Cells
    • /
    • v.37 no.7
    • /
    • pp.518-525
    • /
    • 2014
  • Gammaherpesvirus (${\gamma}HV$) infection of the central nervous system (CNS) has been implicated in diverse neurological diseases, and murine ${\gamma}HV$-68 (MHV-68) is known to persist in the brain after cerebral infection. The underlying molecular mechanisms of persistency of virus in the brain are poorly understood. Here, we characterized a unique pattern of MHV-68 persistent infection in neuroblastoma cells. On infection with MHV-68, both murine and human neuroblastoma cells expressed viral lytic proteins and produced virions. However, the infected cells survived productive infection and could be cultured for multiple passages without affecting their cellular growth. Latent infection as well as productive replication was established in these prolonged cultures, and lytic replication was further increased by treatment with lytic inducers. Our results provide a novel system to study persistent infection of ${\gamma}HVs$ in vitro following de novo infection and suggest application of MHV-68 as a potential gene transfer vector to the brain.

Human Cytomegalovirus Replication and $Ca^{2+}$ Response in Human Cell Lines of Neuronal Origin (신경세포에서의 Human Cytomegalovirus 증식과 이에 따른 세포내 유리칼슘 농도 변화)

  • Kang, Kyung-Hee;Lee, Chan-Hee
    • The Journal of Korean Society of Virology
    • /
    • v.26 no.1
    • /
    • pp.1-8
    • /
    • 1996
  • Human cytomegalovirus (HCMV) replication and $Ca^{2+}$ response in human cell lines of neuronal origin were investigated. SK-N-SH (neuroblastoma cells) and A172 cells (glioblastoma cells) were used. SK-N-SH cells were permissive for HCMV multiplication with a delay of one day compared to virus multiplication in human embryo lung (HEL) cells. The delay of HCMV multiplication in SK-N-SH cells appeared to be correlated with a delay in the $Ca^{2+}$ response. The cytoplasmic free $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) began to increase at 12 h p.i. in HCMV-infected SK-N-SH cells, while $[Ca^{2+}]_i$ increase in HCMV-infected HEL cells was observed as early as 3 h p.i. On the whole, the level of the increase in $[Ca^{2+}]_i$ in SK-N-SH cells was about 30% of that in HEL cells. On the other hand, in A172 cells infected with HCMV, neither production of infectious virus nor detectable increase in $[Ca^{2+}]_i$ was observed. Treatment with TPA of HCMV-infected SK-N-SH cells resulted in $[Ca^{2+}]_i$ increase at 6 h p.i. The stimulatory effect of TPA on HCMV- induced $[Ca^{2+}]_i$ increase continued until 12 h p.i., but TPA failed to stimulate the $Ca^{2+}$ response in SK-N-SH cells at 24 h p.i., suggesting that the effect of TPA had disappeared in SK-N-SH cells at that time point. In conclusion, SK-N-SH cells are permissive for HCMV replication and the delay in $Ca^{2+}$ response may be a consequence of the lower responsiveness of SK-N-SH cells than HEL cells to HCMV infection.

  • PDF

Enhancement of Arsenic Trioxide ($As_2O_3$)-Mediated Apoptosis Using Berberine in Human Neuroblastoma SH-SY5Y Cells

  • Kim, Dae-Won;Ahan, Song-Ho;Kim, Tae-Young
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.5
    • /
    • pp.392-399
    • /
    • 2007
  • Objective : Arsenic trioxide ($As_2O_3$) has been used as an anticancer agent in traditional Chinese medicine for thousand years and berberine is an isoquinoline alkaloid present that has indicated significant antimicrobial activity. We have examined the combined anticancer effects of $As_2O_3$ and berberine against the human neuroblastoma (HNB) SH-SY5Y cells in vitro, and to elucidate underlying molecular mechanism. Methods : HNB SH-SY5Y cells were treated with $2\;{\mu}M\;As_2O_3$ and $75\;{\mu}g/ml$ berberine, and their survival, cell death mechanism as well as synergistic cytotoxic effects were estimated by using MTT assay, DAPI staining, agarose gel electrophoresis, flow cytometric analysis, and western blot analysis. Results : The combined treatment of two drugs also markedly decreased cell viability. The cytotoxic effects of two drugs were revealed as apoptosis characterized by chromatin condensation, DNA fragmentation, and the loss of mitochondrial membrane potential. The apoptotic cytotoxicity was accompanied by activation of caspase-3 protease as well as decreased the expression of Bcl-2, Bid, and Bcl-x/L. In addition, the cells treated with combination of two drugs also showed significantly increased intracellular reactive oxygen species levels and lipid peroxidation compared to cells $As_2O_3$or berberine only. Conclusion : Combined treatment of $As_2O_3$ with berberine induced activation of apoptotic signaling pathways in HNB SH-SY5Y cells. These results suggest that the possibility of the combined treatment of two chemotherapeutic agents with low concentration improving cytotoxic effect for cancer cells with minimal side effects.

인간 신경아세포종 세포 배양을 통한 뇌 신경세포 생육 촉진인자의 생산

  • Hong, Jong-Soo;Woo, Kwang-Hoe;Park, Kyung-You;Lee, Hyeon-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.1
    • /
    • pp.102-105
    • /
    • 1997
  • In cultivating human neuroblastoma cells maximum number of neurites per cell and length of the neurite were estimated as 5.5 and 2.2 (nm), respectively It was found that there was correlation between growth and differentiation of nerve cells. Maximum specific BDNF production rate was also calculated as 2.5$\times $10$^{-5}$(ng/cell/day) at 7$\times $ 10$^{5}$ (viable cells/ml) of maximum cell density, corresponding to 100 (ng/mL) of BDNF. The secretion of BDNF was occurred most in the later peroids of the cultivation, yielding 75 (ng/mL) of BDNF. The production of rate of BDNF was elongated in adding 1 ($\mu $g/mL) of BDNF as well as 40% increase of the length of the BDNF. It proves that BDNF can be used as one of biopharmaceuticals to treat age-related diseases such as Alzheimer's disease and Prakinson's disease. It can also provide the information of scaling-up mammalian cell cuture system to economically produce BDNF.

  • PDF

Inhibitory Effects of Constituents of Gastrodia elata Bl. on Glutamate-Induced Apoptosis in MIR-32 Human Neuroblastoma Cells

  • Lee, Yong-Soo;Ha, Jeoung-Hee;Yong, Chul-Soon;Lee, Dong-Ung;Huh, Keun;Kang, Young-Shin;Lee, Sun-Hee;Jung, Mi-Wha;Kim, Jung-Ae
    • Archives of Pharmacal Research
    • /
    • v.22 no.4
    • /
    • pp.404-409
    • /
    • 1999
  • The inhibitory effects of the constituents of Gastrodia elata Bl. (GE) on glutamate-induced apoptosis in human neuronal cells were investigated using IMR32 human neuroblastoma cells. Glutamate (GLU) induced DNA fragmentation, a hallmark of apoptosis, in a dose-dependent manner. GLU also induced a slow and sustained increase in intracellular $Ca^{2+}$ concentration. Treatment with EGTA, an extracellular $Ca^{2+}$ chelator, in a nominal $Ca^{2+}$ -free buffer solution abolished the GLU-induced intracellular $Ca^{2+}$ increase, indicating that GLU stimulated Ca2+ influx pathway in the IMR32 cells. BAPTA, an intracellualr $Ca^{2+}$ chelator, significantly inhibited the GLU-induced apoptosis assessed by the flow cytometry measuring hypodiploid DNA content indicative of apoptosis, implying that intracellular $Ca^{2+}$ rise may mediate the apoptotic action of GLU. Vanillin (VAN) and p-hydroxybenzaldehyde(p-HB), known constituents of GE, significantly inhibited both intracellular $Ca^{2+}$ rise and apoptosis induced by GLU. These results suggest that the apoptosis-inhibitory actions of the constituents of GE may account, at least in part, for the basis of their antiepileptic activities. These results further suggest that intracelluarl $Ca^{2+}$ signaling pathway may be a molecular target of the constituents of GE.

  • PDF

The c-myc Expression on the Opioid Tolerance in Human Neuroblastoma SH-SY5Y Cells (사람 Neuroblastoma SH-SY5Y 세포주에서 Opiate 내성에 의한 c-myc 유전자 표현)

  • Park, Chang-Kyo;Kwon, Gee-Youn;Suh, Sung-Il;Kim, Soo-Kyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.691-697
    • /
    • 1997
  • The mechanisms underlying opiate tolerance and dependence are not fully understood. We used human neuroblastoma SH-SY5Y cells as a model system for studying effects of morphine tolerance and withdrawal on c-myc induction and cAMP levels. It has been reported that regulation of c-fos by acute and chronic morphine withdrawal is mediated through alterations in CREB transcription factor. In this study, we examined the effects of morphine tolerance on c-myc expression and cAMP concentrations. The activation of opiate receptors by an acute morphine administration resulted in an increase in c-myc mRNA and a decrease in cAMP concentrations in a dose-dependent manner $(5,\;10,\;15,\;and\;20\;{\mu}M)$. On the other hand, the chronic treatment of morphine $(10\;{\mu}M\;for\;six\;days)$ did not induce the elevated expression of c-myc mRNA. The c-myc expression was slightly inhibited in comparison with that of the acute morphine response. However, cAMP concentrations were increased with regard to morphine withdrawal response. These results suggest that the alterations in c-myc expression might imply a significant opiate regulation relating to morphine tolerance. This observation differs from increased expression of c-fos via regulation of cAMP pathway.

  • PDF

Identification of Genes Associated with Early and Late Response of Methylmercury in Human Neuroblastoma Cell Line

  • Kim, Youn-Jung;Kim, Mi-Soon;Jeon, Hee-Kyung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.2
    • /
    • pp.164-169
    • /
    • 2008
  • Methylmercury (MeHg) is known to have devastating effects on the mammalian nervous system. In order to characterize the mechanism of MeHg-induced neurotoxicity, we investigated the analysis of transcriptional profiles on human 8k cDNA microarray by treatment of $1.4{\mu}M$ MeHg at 3, 12, 24 and 48h in human neuroblastoma SH-SY5Y cell line. Some of the identified genes by MeHg treatment were significant at early time points (3h), while that of others was at late time points (48h). The early response genes that may represent those involved directly in the MeHg response included pantothenate kinase 3, a kinase (PRKA) anchor protein (yotiao) 9, neurotrophic tyrosine kinase, receptor, type 2 gene, associated with NMDA receptor activity regulation or perturbations of central nervous system homeostasis. Also, when SH-SY5Y cells were subjected to a longer exposure (48h), a relative increase was noted in a gene, glutamine-fructose-6-phosphate transaminase 1, reported that overexpression of this gene may lead to the increased resistance to MeHg. To confirm the alteration of these genes in cultured neurons, we then applied real time-RT PCR with SYBR green. Thus, this result suggests that a neurotoxic effect of the MeHg might be ascribed that MeHg alters neuronal receptor regulation or homeostasis of neuronal cells in the early phase. However, in the late phase, it protects cells from neurotoxic effects of MeHg.