• Title/Summary/Keyword: Human network

Search Result 2,846, Processing Time 0.028 seconds

A Robust Approach for Human Activity Recognition Using 3-D Body Joint Motion Features with Deep Belief Network

  • Uddin, Md. Zia;Kim, Jaehyoun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.1118-1133
    • /
    • 2017
  • Computer vision-based human activity recognition (HAR) has become very famous these days due to its applications in various fields such as smart home healthcare for elderly people. A video-based activity recognition system basically has many goals such as to react based on people's behavior that allows the systems to proactively assist them with their tasks. A novel approach is proposed in this work for depth video based human activity recognition using joint-based motion features of depth body shapes and Deep Belief Network (DBN). From depth video, different body parts of human activities are segmented first by means of a trained random forest. The motion features representing the magnitude and direction of each joint in next frame are extracted. Finally, the features are applied for training a DBN to be used for recognition later. The proposed HAR approach showed superior performance over conventional approaches on private and public datasets, indicating a prominent approach for practical applications in smartly controlled environments.

Development of Facial Expression Recognition System based on Bayesian Network using FACS and AAM (FACS와 AAM을 이용한 Bayesian Network 기반 얼굴 표정 인식 시스템 개발)

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.562-567
    • /
    • 2009
  • As a key mechanism of the human emotion interaction, Facial Expression is a powerful tools in HRI(Human Robot Interface) such as Human Computer Interface. By using a facial expression, we can bring out various reaction correspond to emotional state of user in HCI(Human Computer Interaction). Also it can infer that suitable services to supply user from service agents such as intelligent robot. In this article, We addresses the issue of expressive face modeling using an advanced active appearance model for facial emotion recognition. We consider the six universal emotional categories that are defined by Ekman. In human face, emotions are most widely represented with eyes and mouth expression. If we want to recognize the human's emotion from this facial image, we need to extract feature points such as Action Unit(AU) of Ekman. Active Appearance Model (AAM) is one of the commonly used methods for facial feature extraction and it can be applied to construct AU. Regarding the traditional AAM depends on the setting of the initial parameters of the model and this paper introduces a facial emotion recognizing method based on which is combined Advanced AAM with Bayesian Network. Firstly, we obtain the reconstructive parameters of the new gray-scale image by sample-based learning and use them to reconstruct the shape and texture of the new image and calculate the initial parameters of the AAM by the reconstructed facial model. Then reduce the distance error between the model and the target contour by adjusting the parameters of the model. Finally get the model which is matched with the facial feature outline after several iterations and use them to recognize the facial emotion by using Bayesian Network.

A Novel Sensor Data Transferring Method Using Human Data Muling in Delay Insensitive Network

  • Basalamah, Anas
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.21-28
    • /
    • 2021
  • In this paper, a novel data transferring method is introduced that can transmit sensor data without using data bandwidth or an extra-processing cycle in a delay insensitive network. The proposed method uses human devices as Mules, does not disturb the device owner for permission, and saves energy while transferring sensor data to the collection hub in a wireless sensor network. This paper uses IP addressing technique as the data transferring mechanism by embedding the sensor data with the IP address of a Mule. The collection hub uses the ARP sequence method to extract the embedded data from the IP address. The proposed method follows WiFi standard in its every step and ends when data collection is over. Every step of the proposed method is discussed in detail with the help of figures in the paper.

The Relative Effects of Human Capital and Social Capital on the Economic Well-being of the Late Middle-aged in Korea (중년기의 경제적 복지에 대한 인적자본과 사회자본의 상대적 효과)

  • Seo, Ji-Won
    • Journal of Families and Better Life
    • /
    • v.26 no.5
    • /
    • pp.315-332
    • /
    • 2008
  • The purpose of this study was to investigate the relative effects of human capital and social capital on the economic well-being of late middle-aged Koreans. The data from the first wave of KLoSA (Korean Longitudinal Study of Aging) aged 50-64 were used (n=4,040). The major findings were as follows: First, human capital and social capital are both resources that can contribute to increasing the economic well-being of the middle-aged. Second, the relative contribution of human capital to the economic well-being of the middle-aged varied by the level of social capital, including formal network and informal network. Third, the relative contribution of social capital to the economic well-being of the middle-aged varied by the level of human capital, including employment type and educational attainment. Based on empirical results, the implications for social investment in human capital and social capital were provided.

A new Network Coordinator Node Design Selecting the Optimum Wireless Technology for Wireless Body Area Networks

  • Calhan, Ali;Atmaca, Sedat
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.1077-1093
    • /
    • 2013
  • This paper proposes a new network coordinator node design to select the most suitable wireless technology for WBANs by using fuzzy logic. Its goal is to select a wireless communication technology available considering the user/application requirements and network conditions. A WBAN is composed of a set of sensors placed in, on, or around human body, which monitors the human body functions and the surrounding environment. In an effort to send sensor readings from human body to medical center or a station, a WBAN needs to stay connected to a local or a wide area network by using various wireless communication technologies. Nowadays, several wireless networking technologies may be utilized in WLANs and/or WANs each of which is capable of sending WBAN sensor readings to the desired destination. Therefore, choosing the best serving wireless communications technology has critical importance to provide quality of service support and cost efficient connections for WBAN users. In this work, we have developed, modeled, and simulated some networking scenarios utilizing our fuzzy logic-based NCN by using OPNET and MATLAB. Besides, we have compared our proposed fuzzy logic based algorithm with widely used RSSI-based AP selection algorithm. The results obtained from the simulations show that the proposed approach provides appropriate outcomes for both the WBAN users and the overall network.

Bayesian Network Model for Human Fatigue Recognition (피로 인식을 위한 베이지안 네트워크 모델)

  • Lee Young-sik;Park Ho-sik;Bae Cheol-soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9C
    • /
    • pp.887-898
    • /
    • 2005
  • In this paper, we introduce a probabilistic model based on Bayesian networks BNs) for recognizing human fatigue. First of all, we measured face feature information such as eyelid movement, gaze, head movement, and facial expression by IR illumination. But, an individual face feature information does not provide enough information to determine human fatigue. Therefore in this paper, a Bayesian network model was constructed to fuse as many as possible fatigue cause parameters and face feature information for probabilistic inferring human fatigue. The MSBNX simulation result ending a 0.95 BN fatigue index threshold. As a result of the experiment, when comparisons are inferred BN fatigue index and the TOVA response time, there is a mutual correlation and from this information we can conclude that this method is very effective at recognizing a human fatigue.

Human Identification using EMG Signal based Artificial Neural Network (EMG 신호 기반 Artificial Neural Network을 이용한 사용자 인식)

  • Kim, Sang-Ho;Ryu, Jae-Hwan;Lee, Byeong-Hyeon;Kim, Deok-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.142-148
    • /
    • 2016
  • Recently, human identification using various biological signals has been studied and human identification based on the gait has been actively studied. In this paper, we propose a human identification based on the EMG(Electromyography) signal of the thigh muscles that are used when walking. Various features such as RMS, MAV, VAR, WAMP, ZC, SSC, IEMG, MMAV1, MMAV2, MAVSLP, SSI, WL are extracted from EMG signal data and ANN(Artificial Neural Network) classifier is used for human identification. When we evaluated the recognition ratio per channel and features to select approptiate channels and features for human identification. The experimental results show that the rectus femoris, semitendinous, vastus lateralis are appropriate muscles for human identification and MAV, ZC, IEMG, MMAV1, MAVSLP are adaptable features for human identification. Experimental results also show that the average recognition ratio of method of using all channels and features is 99.7% and that of using selected 3 channels and 5 features is 96%. Therefore, we confirm that the EMG signal can be applied to gait based human identification and EMG signal based human identification using small number of adaptive muscles and features shows good performance.

Network human-robot interface at service level

  • Nguyen, To Dong;Oh, Sang-Rok;You, Bum-Jae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1938-1943
    • /
    • 2005
  • Network human-robot interface is an important research topic. In home application, users access the robotic system directly via voice, gestures or through the network. Users explore a system by using the services provided by this system and to some extend users are enable to participate in a service as partners. A service may be provided by a robot, a group of robots or robots and other network connected systems (distributed sensors, information systems, etc). All these services are done in the network environment, where uncertainty such as the unstable network connection, the availability of the partners in a service, exists. Moreover, these services are controlled by several users, accessing at different time by different methods. Our research aimed at solving this problem to provide a high available level, flexible coordination system. In this paper, a multi-agent framework is proposed. This framework is validated by using our new concept of slave agents, a responsive multi-agent environment, a virtual directory facilitator (VDF), and a task allocation system using contract net protocol. Our system uses a mixed model between distributed and centralized model. It uses a centralized agent management system (AMS) to control the overall system. However, the partners and users may be distributed agents connected to the center through agent communication or centralized at the AMS container using the slave agents to represent the physical agents. The system is able to determine the task allocation for a group of robot working as a team to provide a service. A number of experiments have been conducted successfully in our lab environment using Issac robot, a PDA for user agent and a wireless network system, operated under our multi agent framework control. The experiments show that this framework works well and provides some advantages to existing systems.

  • PDF

Performance Assessment of an Access Point for Human Data and Machine Data

  • Lee, Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.6
    • /
    • pp.1081-1090
    • /
    • 2015
  • This work proposes a theoretic framework for the performance assessment of an access point in the IP network that accommodates MD (Machine Data) and HD (Human Data). First, we investigate typical resource allocation methods in LTE for MD and HD. After that we carry out a Max-Min analysis about the surplus and deficiency of network resource seen from MD and HD. Finally, we evaluate the performance via numerical experiment.