• 제목/요약/키워드: Human migration

검색결과 686건 처리시간 0.021초

Radially patterned polycaprolactone nanofibers as an active wound dressing agent

  • Shin, Dongwoo;Kim, Min Sup;Yang, Chae Eun;Lee, Won Jai;Roh, Tai Suk;Baek, Wooyeol
    • Archives of Plastic Surgery
    • /
    • 제46권5호
    • /
    • pp.399-404
    • /
    • 2019
  • Background The objectives of this study were to design polycaprolactone nanofibers with a radial pattern using a modified electrospinning method and to evaluate the effect of radial nanofiber deposition on mechanical and biological properties compared to non-patterned samples. Methods Radially patterned polycaprolactone nanofibers were prepared with a modified electrospinning method and compared with randomly deposited nanofibers. The surface morphology of samples was observed under scanning electron microscopy (SEM). The tensile properties of nanofibrous mats were measured using a tabletop uniaxial testing machine. Fluorescence-stained human bone marrow stem cells were placed along the perimeter of the radially patterned and randomly deposited. Their migration toward the center was observed on days 1, 4, and 7, and quantitatively measured using ImageJ software. Results Overall, there were no statistically significant differences in mechanical properties between the two types of polycaprolactone nanofibrous mats. SEM images of the obtained samples suggested that the directionality of the nanofibers was toward the central area, regardless of where the nanofibers were located throughout the entire sample. Florescence images showed stronger fluorescence inside the circle in radially aligned nanofibers, with significant differences on days 4 and 7, indicating that migration was quicker along radially aligned nanofibers than along randomly deposited nanofibers. Conclusions In this study, we successfully used modified electrospinning to fabricate radially aligned nanofibers with similar mechanical properties to those of conventional randomly aligned nanofibers. In addition, we observed faster migration along radially aligned nanofibers than along randomly deposited nanofibers. Collectively, the radially aligned nanofibers may have the potential for tissue regeneration in combination with stem cells.

GPU-based Monte Carlo Photon Migration Algorithm with Path-partition Load Balancing

  • Jeon, Youngjin;Park, Jongha;Hahn, Joonku;Kim, Hwi
    • Current Optics and Photonics
    • /
    • 제5권6호
    • /
    • pp.617-626
    • /
    • 2021
  • A parallel Monte Carlo photon migration algorithm for graphics processing units that implements an improved load-balancing strategy is presented. Conventional parallel Monte Carlo photon migration algorithms suffer from a computational bottleneck due to their reliance on a simple load-balancing strategy that does not take into account the different length of the mean free paths of the photons. In this paper, path-partition load balancing is proposed to eliminate this computational bottleneck based on a mathematical formula that parallelizes the photon path tracing process, which has previously been considered non-parallelizable. The performance of the proposed algorithm is tested using three-dimensional photon migration simulations of a human skin model.

TRAIL Suppresses Human Breast Cancer Cell Migration via MADD/CXCR7

  • Wang, Rui;Li, Jin-Cheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권7호
    • /
    • pp.2751-2756
    • /
    • 2015
  • Background: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can specifically induce apoptosis limited to various cancer cells, so this reagent is considered a promising medicine for cancer therapy. TRAIL also exerts effects on non-apoptotic signals, relevant to processes such as metastasis, autophagy and proliferation in cancer cells. However, the mechanisms of TRAIL-regulated non-apoptotic signals are unclear. The purpose of this study was to investigate MADD/CXCR7 effects in TRAIL-mediated breast cancer cell migration. Materials and Methods: The ability of MADD/CXCR7 to regulate MVP signaling in TRAIL-mediated breast cancer cells migration was evaluated by transwell migration assay, quantitative RT-PCR, Western blotting and knock down experiments. Results: In this study, we found that treatment with TRAIL resulted in induced expression levels of MADD and CXCR7 in breast cancer cells. Knock down of MADD followed by treatment with TRAIL resulted in increased cell migration compared to either treatment alone. Similarly, through overexpression and knockdown experiments, we demonstrated that CXCR7 also positively regulated TRAIL-inhibited migration. Surprisingly, knock down of MADD lead to inhibition of TRAIL-induced CXCR7 mRNA and protein expression and overexpression of CXCR7 lead to the reduction of MADD expression, indicating that MADD is an upstream regulatory factor of TRAIL-triggered CXCR7 production and a negative feedback mechanism between MADD and CXCR7. Furthermore, we showed that CXCR7 is involved in MADD-inhibited migration in breast cancer cells. Conclusions: Our work defined a novel signaling pathway implicated in the control of breast cancer migration.

Differential Wnt11 Expression Related to Wnt5a in High- and Low-grade Serous Ovarian Cancer: Implications for Migration, Adhesion and Survival

  • Jannesari-Ladani, Farnaz;Hossein, Ghamartaj;Izadi-Mood, Narges
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권3호
    • /
    • pp.1489-1495
    • /
    • 2014
  • Wnt is a powerful signaling pathway that plays a crucial role in cell fate determination, survival, proliferation and motility during development, in adult tissues and cancer. The aims of the present study were three fold: i) to assess Wnt11 immunoexpression and its possible relationship with Wnt5a in high- and low-grade human serous ovarian cancer (HGSC and LGSC) specimens; ii) to assess Wnt11 expression levels in Wnt5a overexpressing SKOV-3 cells; iii) to reveal the role of Wnt11 in viability, adhesion, migration and invasion of SKOV-3 cells using recombinant human Wnt11 (rhWnt11). Immunohistochemistry revealed a significant difference in Wnt11 expression between HGSC and LGSC groups (p=0.001). Moreover, a positive correlation was observed between Wnt5a and Wnt11 expression in the HGSC (r=0.713, p=0.001), but not the LGSC group. The expression of Wnt11 was decreased by 35% in Wnt5a overexpressing cells (SKOV-3/Wnt5a) compared to mock controls. Similarly Wnt11 expression levels were decreased by 47% in the presence of exogenous Wnt5a compared to untreated cells. In the presence of rhWnt11, 31% increased cell viability (p<0.001) and 21% increased cell adhesion to matrigel (p<0.01) were observed compared to control. Cell migration was increased by 1.6-fold with rhWnt11 as revealed by transwell migration assay (p<0.001). However, 45% decreased cell invasion was observed in the presence of rhWnt11 compared to control (p<0.01). Our results may suggest that differential Wnt11 immunoexpression in HGSC compared to LGSC could play important roles in serous ovarian cancer progression and may be modulated by Wnt5a expression levels.

A New Histone Deacetylase Inhibitor, MHY219, Inhibits the Migration of Human Prostate Cancer Cells via HDAC1

  • De, Umasankar;Kundu, Soma;Patra, Nabanita;Ahn, Mee Young;Ahn, Ji Hae;Son, Ji Yeon;Yoon, Jung Hyun;Moon, Hyung Ryoung;Lee, Byung Mu;Kim, Hyung Sik
    • Biomolecules & Therapeutics
    • /
    • 제23권5호
    • /
    • pp.434-441
    • /
    • 2015
  • Histone deacetylase (HDAC) inhibitors are considered novel agents for cancer chemotherapy. We previously investigated MHY219, a new HDAC inhibitor, and its potent anticancer activity in human prostate cancer cells. In the present study, we evaluated MHY219 molecular mechanisms involved in the regulation of prostate cancer cell migration. Similar to suberanilohydroxamic acid (SAHA), MHY219 inhibited HDAC1 enzyme activity in a dose-dependent manner. MHY219 cytotoxicity was higher in LNCaP ($IC_{50}=0.67{\mu}M$) than in DU145 cells ($IC_{50}=1.10{\mu}M$) and PC3 cells ($IC_{50}=5.60{\mu}M$) after 48 h of treatment. MHY219 significantly inhibited the HDAC1 protein levels in LNCaP and DU145 cells at high concentrations. However, inhibitory effects of MHY219 on HDAC proteins levels varied based on the cell type. MHY219 significantly inhibited LNCaP and DU145 cells migration by down-regulation of matrix metalloprotease-1 (MMP-1) and MMP-2 and induction of tissue inhibitor of metalloproteinases-1 (TIMP-1). These results suggest that MHY219 may potentially be used as an anticancer agent to block cancer cell migration through the repression of MMP-1 and MMP-2, which is related to the reduction of HDAC1.

우리나라 수도권으로의 인구이동: 시기별 유출지역 특성과 이주자 선별성의 상대적 중요도 평가 (Migration to the Capital Region in Korea: Assessing the Relative Importance of Place Characteristics and Migrant Selectivity)

  • 권상철
    • 한국지역지리학회지
    • /
    • 제11권6호
    • /
    • pp.571-584
    • /
    • 2005
  • 우리나라의 과도한 수도권 인구집중은 지역불균형발전의 원인으로 최근 지역인적자원육성 측면에서 중요한 문제로 제기된다. 인구이동은 지리적 이동임과 동시에 사회적 이동으로 수도권으로의 인구이동을 유출지역 입장에서 접근해 보면 유출지역의 배출요인과 이주자의 선별성으로 구분지어 검토해 볼 수 있다. 수도권으로의 이주에 이들이 미치는 상대적 중요도를 보면 전체적으로 연령이 가장 중요하게 나타나며, 제조업 비율, 농촌/도시가 이전에는 중요하였으나 점차 최근으로 오며 교육수준, 노동직 비율, 제조업 비율, 그리고 실업률이 중요한 지역 특성 변수로 등장하고 있다. 불균형발전이 심화되어 있는 우리나라의 실정에서 두뇌유출은 현실로 나타나고 있기에 이러한 결과는 지역차원의 인재육성과 더불어 지역내에서 양질의 취업기회를 통한 이들 인재의 확보를 위한 고려가 필요함을 보여주고 있다.

  • PDF

Human Aortic Smooth Muscle Cell에서 하엽(荷葉)의 항동맥경화 활성 연구 (Nelumbo nucifera Leaves Inhibit HASMC Proliferation and Migration Activated by TNF-$\alpha$)

  • 김선모;윤현정;이효승;원찬욱;김재은;박선동
    • 대한본초학회지
    • /
    • 제24권4호
    • /
    • pp.77-86
    • /
    • 2009
  • Objectives : The proliferation and migration of human aortic smooth muscle cells (HASMC) in response to activation by various stimuli plays a critical role in the initiation and development of atherosclerosis. This study was conducted to examine the effects of Nelumbo nucifera leaves (NNL) on the proliferation and migration of HASMC. Additionally, the mechanisms involved in any observed effects were also evaluated. Methods : Apoptotic cells were measured by staining with FITC-labeled annexin V, followed by flow cytometric analysis. The expression level of apoptosis related proteins was confirmed by western blot. And MMP-9 activity was measured by gelatin zymography and MMP-9 expression was measured by ELISA Results : NNL completely inhibited the proliferation of HASMC via induction of the expression of apoptotic proteins including annexin V, cleaved poly ADP-ribose polymerase (PARP), and caspase-3 and -8. NNL treatment resulted in the release of cytochrome c into cytosol, a loss of mitochondrial membrane potential, a decrease in Bcl-2 and Bcl-xL and an increase in Bax expression. NNL also blocked HASMC migration via suppression of MMP-9. Conclusions : Taken together, these results indicate that NNL has the potential for use as an anti-artherosclerosis agent.

Effects of ascorbic acid augmented albumin platelet-rich fibrin on the wound healing activity of human gingival fibroblasts: an in vitro trial

  • Manjiri Kulkarni;Sowmya NK;Gayathri GV;Triveni MG
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제50권4호
    • /
    • pp.206-215
    • /
    • 2024
  • Objectives: The current in vitro study aimed to assess the effects of ascorbic acid augmented albumin platelet-rich fibrin (AA Alb-PRF) on the wound healing activity of human gingival fibroblasts (HGFs) purported to be a regenerative biomaterial in surgical procedures. Materials and Methods: All assays were performed on three HGF groups, group I: complete media; group II: Alb-PRF, and group III: AA Alb-PRF. Alb-PRF was prepared following the protocol by Fujioka-Kobayashi et al. (2021). For preparation of AA Alb-PRF, 2,500 ㎍ AA was added to the blood pre-centrifugation. All groups were subjected to 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay to estimate cell viability and proliferation, scratch assay for migration (0, 4, 12, and 24 hours) and transwell migration assay for chemotactic migration assessment (24 hours). Outcome variables were optical density (OD) for MTT assay, percentage of wound closure in scratch assay, and number of migrated cells in transwell migration assay. One-way ANOVA for MTT and transwell migration assays and two-way ANOVA for scratch assay with Bonferroni correction were performed with significance set at P<0.05. Results: Cell viability and proliferation (OD: 0.684±0.003 and proliferation: 28%) and wound closure (49.92%±1.62% at 4 hours and 61.39%±0.88% at 12 hours) were significantly higher in group III, while group II demonstrated the maximum number of HGFs migrating across the transwell membrane (9.25±2.49) with P<0.05. Conclusion: HGFs demonstrated a significant increase in viability and proliferation along with rapid wound closure in the presence AA Alb-PRF compared to Alb-PRF alone, indicating additional beneficial effects of AA. Thus, AA Alb-PRF potentiates the wound healing activity of HGFs and could be employed in oral, maxillofacial, and periodontal surgeries as a regenerative biomaterial.

Norcantharidin Anti-Angiogenesis Activity Possibly through an Endothelial Cell Pathway in Human Colorectal Cancer

  • Yu, Tao;Hou, Fenggang;Liu, Manman;Zhou, Lihong;Li, Dan;Liu, Jianrong;Fan, Zhongze;Li, Qi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권2호
    • /
    • pp.499-503
    • /
    • 2012
  • The present study was based on the unexpected discovery that norcantharidin exerted anti-angiogenesis activity when effects on growth of human colon cancer were studied. The aim was to further verify this finding and explore possible mechanisms using a tumor xenograft model in nude mice. We confirmed that norcantharidin (5 or 15 mg/kg) could inhibit angiogenesis of human colon cancer in vivo. In vitro, crossing river assay, cell adhesion assay and tube formation assay indicated that NCTD could reduce the migration, adhesion and vascular network tube formation ability of HUVECs. At the same time, the expression levels of VEGF and VEGFR-2 proteins which play important roles in angiogenesis were reduced as examined by western blotting analysis. Taken together, the results firstly showed NCTD could inhibit angiogenesis of human colon cancer in vivo, probably associated with effects on migration, adhesion and vascular network tube formation of HUVECs and expression levels of VEGF and VEGFR-2 proteins.

Royal jelly enhances migration of human dermal fibroblasts and alters the levels of cholesterol and sphinganine in an in vitro wound healing model

  • Kim, Ju-Young;Kim, Young-Ae;Yun, Hye-Jeong;Park, Hye-Min;Kim, Sun-Yeou;Lee, Kwang-Gill;Han, Sang-Mi;Cho, Yun-Hi
    • Nutrition Research and Practice
    • /
    • 제4권5호
    • /
    • pp.362-368
    • /
    • 2010
  • Oral administration of royal jelly (RJ) promotes wound healing in diabetic mice. Concerns have arisen regarding the efficacy of RJ on the wound healing process of normal skin cells. In this study, a wound was created by scratching normal human dermal fibroblasts, one of the major cells involved in the wound healing process. The area was promptly treated with RJ at varying concentrations of 0.1, 1.0, or 5 mg/ml for up to 48 hrs and migration was analyzed by evaluating closure of the wound margins. Furthermore, altered levels of lipids, which were recently reported to participate in the wound healing process, were analyzed by HPTLC and HPLC. Migration of fibroblasts peaked at 24 hrs after wounding. RJ treatment significantly accelerated the migration of fibroblasts in a dose-dependent manner at 8 hrs. Although RJ also accelerated the migration of fibroblasts at both 20 hrs and 24 hrs after wounding, the efficacy was less potent than at 8 hrs. Among various lipid classes within fibroblasts, the level of cholesterol was significantly decreased at 8 hrs following administration of both 0.1 ug/ml and 5 mg/ml RJ. Despite a dose-dependent increase in sphinganines, the levels of sphingosines, ceramides, and glucosylceramides were not altered with any concentration of RJ. We demonstrated that RJ enhances the migration of fibroblasts and alters the levels of various lipids involved in the wound healing process.