• Title/Summary/Keyword: Human in vitro model

Search Result 377, Processing Time 0.028 seconds

Interleukin-7 Enhances the in Vivo Anti-tumor Activity of Tumor-reactive CD8+ T cells with Induction of IFN-gamma in a Murine Breast Cancer Model

  • Yuan, Chun-Hui;Yang, Xue-Qin;Zhu, Cheng-Liang;Liu, Shao-Ping;Wang, Bi-Cheng;Wang, Fu-Bing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.265-271
    • /
    • 2014
  • Interleukin-7 (IL-7) is a potent anti-apoptotic cytokine that enhances immune effector cell functions and is essential for lymphocyte survival. While it known to induce differentiation and proliferation in some haematological malignancies, including certain types of leukaemias and lymphomas, little is known about its role in solid tumours, including breast cancer. In the current study, we investigated whether IL-7 could enhance the in vivo antitumor activity of tumor-reactive $CD8^+$ T cells with induction of IFN-${\gamma}$ in a murine breast cancer model. Human IL-7 cDNA was constructed into the eukaryotic expression plasmid pcDNA3.1, and then the recombinational pcDNA3.1-IL-7 was intratumorally injected in the TM40D BALB/C mouse graft model. Serum and intracellular IFN-${\gamma}$ levels were measured by ELISA and flow cytometry, respectively. $CD8^+$ T cell-mediated cytotoxicity was analyzed using the MTT method. Our results showed that IL-7 administration significantly inhibited tumor growth from day 15 after direct intratumoral injection of pcDNA3.1-IL-7. The anti-tumor effect correlated with a marked increase in the level of IFN-${\gamma}$ and breast cancer cells-specific CTL cytotoxicity. In vitro cytotoxicity assays showed that IL-7-treatment could augment cytolytic activity of $CD8^+$ T cells from tumor bearing mice, while anti-IFN-${\gamma}$ blocked the function of $CD8^+$ T cells, suggesting that IFN-${\gamma}$ mediated the cytolytic activity of $CD8^+$ T cells. Furthermore, in vivo neutralization of $CD8^+$ T lymphocytes by CD8 antibodies reversed the antitumor benefit of IL-7. Thus, we demonstrated that IL-7 exerts anti-tumor activity mainly through activating $CD8^+$ T cells and stimulating them to secrete IFN-${\gamma}$ in a murine breast tumor model. Based on these results, our study points to a potential novel way to treat breast cancer and may have important implications for clinical immunotherapy.

Osteogenic effects of polyethyleneimine-condensed BMP-2 genes in vitro and in vivo (Polyethyleneimine-응축 BMP-2 발현 유전자를 이용한 골형성 효과)

  • Cheong, Hee-Sun;Kim, Kyoung-Hwa;Park, Yoon-Jeong;Kim, Tae-Il;Lee, Yong-Moo;Ku, Young;Rhyu, In-Chul;Lee, Dong-Soo;Lee, Seung-Jin;Chung, Chong-Pyoung;Han, Soo-Boo;Seol, Yang-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.4
    • /
    • pp.859-869
    • /
    • 2007
  • Naked DNA and standard vectors have been previously used for gene delivery. Among these, PEI can efficiently condense DNA and has high intrinsic endosomal activities. The aim of this study is to investigate whether the cationic polycation PEI could increase the transfection efficiency of BMP expressing DNA using a vector-loaded collagen sponge model. BMP-2/pcDNA3.1 plasmid was constructed by subcloning human BMP-2 cDNA into the pcDNA3.1 plasmid vector. PEI/DNA complexes were prepared by mixing PEI and BMP-2/pcDNA3.1 and the constructed complexes were loaded into the collagen sponges. In vitro studies, BMSCs were transfected with the PEI/BMP-2/pcDNA3.1 complexes from collgen sponge. The level of secreted BMP-2 and alkaline phosphatase activities of transfected BMSCs were significantly higher in PEI/BMP-2/pcDNA3.1 group than in BMP-2/pcDNA3.1 group (p<0.05). Transfected BMSCs were cultured and mineralization was observed only in cells treated with PEI/BMP-2/pcDNA3.1 complexes. In vivo studies, PEI/BMP-2/pcDNA3.1/collagen, BMP-2/pcDNA3.1/collagen and blank collagen were grafted in skeletal muscle of nude mice. Ectopic bone formation was shown in PEI/BMP-2/pcDNA3.1/collagen grafted mouse 4 weeks postimplantation, while not in BMP-2/pcDNA3.1 grafted tissue. This study suggests that PEI-condensed DNA encoding for BMP-2 is capable of inducing bone formation in ectopic site and might increase the transfection rate of BMP-2/pcDNA3.1. As a non-viral vector, PEI offers the potential in gene therapy for bone engineering.

The Change of c-jun Promoter Activity in TPA-Induced U937 Cells Infected with Human Cytomegalovirus (HCMV) (TPA로 분화된 U937 세포에서 사람 세포거대바이러스에 의한 c-jun Promoter 활성도의 변화)

  • Park, Chung-Gyu;Kim, Dae-Joong;Kim, Jin-Hee;Han, Tae-Hee;Hwan, Eung-Soo;Choi, Myong-Sik;Kook, Yoon-Hoh;Choi, Sung-Bae;Cha, Chang-Yong
    • The Journal of Korean Society of Virology
    • /
    • v.29 no.2
    • /
    • pp.129-136
    • /
    • 1999
  • Transient transfection assay has been done to evaluate whether the c-jun activation would be prerequisite to the induction of permissiveness against human cytomegalovirus using in vitro cell model in which U937 has been induced to express CD11b and CD14 to become potential monocyte/macrophage cells by TPA treatment. U937 cells were treated with $10\;{\mu}M$, $50\;{\mu}M$ or $100\;{\mu}M$ of TPA. The cell morphology change was observed and the expression of the CD11b and CD14 was confirmed by FACS. Differentiated cells were transfected with pJLuc reporter vector which contained the wild type murine c-jun promoter spanning the SP1, CTF, ATF/CREB and MEF-2 binding sites upstream of the firefly luciferase gene. After 48 hrs of transfection, the cells were infected with HCMV Towne strain and the luciferase activity was assessed at 1 hand 4 h pi. The transfection assay showed no activation of the c-jun promoter at 1 h pi, instead, it showed 2 times increase of the its activity at 4 h pi. There was no difference of the c-jun promoter activation between TPA treated and untreated U937 cells, implying that c-jun activation might not be prerequisite for allowing cells to be premissive to HCMV, although HCMV infection itself could activate c-jun promoter.

  • PDF

Prediction of the human in vivo antiplatelet effect of S- and R-indobufen using population pharmacodynamic modeling and simulation based on in vitro platelet aggregation test

  • Noh, Yook-Hwan;Han, Sungpil;Choe, Sangmin;Jung, Jin-Ah;Jung, Jin-Ah;Hwang, Ae-Kyung;Lim, Hyeong-Seok
    • Translational and Clinical Pharmacology
    • /
    • v.26 no.4
    • /
    • pp.160-165
    • /
    • 2018
  • Indobufen ($Ibustrin^{(R)}$), a reversible inhibitor of platelet aggregation, exists in two enantiomeric forms in 1:1 ratio. Here, we characterized the anti-platelet effect of S- and R-indobufen using response surface modeling using $NONMEM^{(R)}$ and predicted the therapeutic doses exerting the maximal efficacy of each enantioselective S- and R-indobufen formulation. S- and R-indobufen were added individually or together to 24 plasma samples from drug-naïve healthy subjects, generating 892 samples containing randomly selected concentrations of the drugs of 0-128 mg/L. Collagen-induced platelet aggregation in platelet-rich plasma was determined using a Chrono-log Lumi-Aggregometer. Inhibitory sigmoid $I_{max}$ model adequately described the anti-platelet effect. The S-form was more potent, whereas the R-form showed less inter-individual variation. No significant interaction was observed between the two enantiomers. The anti-platelet effect of multiple treatments with 200 mg indobufen twice daily doses was predicted in the simulation study, and the effect of S- or R-indobufen alone at various doses was predicted to define optimal dosing regimen for each enantiomer. Simulation study predicted that 200 mg twice daily administration of S-indobufen alone will produce more treatment effect than S-and R-mixture formulation. S-indobufen produced treatment effect at lower concentration than R-indobufen. However, inter-individual variation of the pharmacodynamic response was smaller in R-indobufen. The present study suggests the optimal doses of R-and S-enantioselective indobufen formulations in terms of treatment efficacy for patients with thromboembolic problems. The proposed methodology in this study can be applied to the develop novel enantio-selective drugs more efficiently.

Contraction Behavior of Collagen Gel and Fibroblats Activity in Dermal Equivalent Model

  • Yang, Eun-Kyung;Lee, Doo-Hoon;Park, Sue-Nie;Choe, Tae-Boo;Park, Jung-Keug
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.4
    • /
    • pp.267-271
    • /
    • 1997
  • We developed a dermal equivalent (DE) which was engineered using human dermal fibroblasts and a matrix of collagen gel. The in vitro construction of the DE was accomplished by casting a porcine collagen type I solution plus concentrated medium with isolated and cultured fibroblasts. These constructs were attached to culture dishes or left floating in culture medium. Contraction of attached gels results in decreased gel thickness without a change in gel diameter, and contraction of floating gels results in decreased gel thickness and diameter. After contraction, there was no increase in cell number in floating gels, but cells in attached gels began to increase after about 4 days of the lag phase in cell growth curve. At this lag phase, addition of fibroblast growth factor (FGF) at a concentration of $0.1{\mu}$/ml promoted cell proliferation in the attached collagen gels, but no effect in floating gels. These results indicate that the method of contraction had an influence on the extracellular matrix (ECM) organization, and this influenced not only cell growth but also fibroblast responsiveness to FGF. This suggests that attached collagen gel is more suitable as a dermal equivalent than the floating gel. And the final contracted area of attached gel is much larger than that of the floating gel since floating gel is contracted in all directions but attached gel is contracted only vertically.

  • PDF

Anti-oxidative effects of broccoli (Brassica oleracea var. italica) sprout extract in RAW 264.7 cell and cisplatin-induced testicular damage

  • Won-Young Lee;Hyun-Woo Shim;Hyun-Jung Park
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.189-198
    • /
    • 2023
  • Background: Brassica oleracea var. italica (broccoli), a rich source of antioxidants, can prevent various diseases and improve human health. In this study, we investigated the antioxidative effects of broccoli sprout extract on oxidative stress induced by lipopolysaccharide and cisplatin in cell and organ tissue models. Methods: Antioxidative effect of BSE was evaluated using DPPH and ABTS in RAW 364.7 cells, and effects of BSE on testes were investigated using Cisplatin-induced testicular damage model with an in vitro organ culture system. Results: The DPPH assay showed that the antioxidant activity of the alcoholic broccoli sprout extract was higher than that of the water extract. Additionally, the expression levels of antioxidation-related genes, Nrf2, Gsr, HO-1, and catalase, were significantly increased in broccoli sprout extract-treated RAW 264.7 cells, and the extract suppressed lipopolysaccharide-induced mitochondrial dysfunction. Based on the results in the RAW 264.7 cell culture, the antioxidative effects of the extracts were investigated in a mouse testis fragment culture. The expression of Nrf2, HO-1, and Ddx4 was clearly decreased in cisplatin-treated mouse testis fragments and not in both broccoli sprout extract- and cisplatin-treated mouse testis fragments. In addition, the oxidative marker O-HdG was strongly detected in cisplatin-treated mouse testis fragments, and these signals were reduced by broccoli sprout extract treatment. Conclusions: The results of this study show that broccoli sprout extracts could serve as potential nutraceutical agents as they possess antioxidant effects in the testes.

The Carcinogenic Liver Fluke Opisthorchis viverrini is a Reservoir for Species of Helicobacter

  • Deenonpoe, Raksawan;Chomvarin, Chariya;Pairojkul, Chawalit;Chamgramol, Yaowalux;Loukas, Alex;Brindley, Paul J;Sripa, Banchob
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.5
    • /
    • pp.1751-1758
    • /
    • 2015
  • There has been a strong, positive correlation between opisthorchiasis-associated cholangiocarcinoma and infection with Helicobacter. Here a rodent model of human infection with Opisthorchis viverrini was utilized to further investigate relationships of apparent co-infections with O. viverrini and H. pylori. A total of 150 hamsters were assigned to five groups: i) Control hamsters not infected with O. viverrini; ii) O. viverrini-infected hamsters; iii) non-O. viverrini infected hamsters treated with antibiotics (ABx); iv) O. viverrini-infected hamsters treated with ABx; and v) O. viverrini-infected hamsters treated both with ABx and praziquantel (PZQ). Stomach, gallbladder, liver, colonic tissue, colorectal feces and O. viverrini worms were collected and the presence of species of Helicobacter determined by PCR-based approaches. In addition, O. viverrini worms were cultured in vitro with and without ABx for four weeks, after which the presence of Helicobacter spp. was determined. In situ localization of H. pylori and Helicobacter-like species was performed using a combination of histochemistry and immunohistochemistry. The prevalence of H. pylori infection in O. viverrini-infected hamsters was significantly higher than that of O. viverrini-uninfected hamsters ($p{\leq}0.001$). Interestingly, O. viverrini-infected hamsters treated with ABx and PZQ (to remove the flukes) had a significantly lower frequency of H. pylori than either O. viverr-iniinfected hamsters treated only with ABx or O. viverrini-infected hamsters, respectively ($p{\leq}0.001$). Quantitative RT-PCR strongly confirmed the correlation between intensity H. pylori infection and the presence of liver fluke infection. In vitro, H. pylori could be detected in the O. viverrini worms cultured with ABx over four weeks. In situ localization revealed H. pylori and other Helicobacter-like bacteria in worm gut. The findings indicate that the liver fluke O. viverrini in the biliary tree of the hamsters harbors H. pylori and Helicobacter-like bacteria. Accordingly, the association between O. viverrini and H. pylori may be an obligatory mutualism.

Protective Role of miR-34c in Hypoxia by Activating Autophagy through BCL2 Repression

  • Kim, Soyoung;Han, Jaeseok;Ahn, Young-Ho;Ha, Chang Hoon;Hwang, Jung Jin;Lee, Sang-Eun;Kim, Jae-Joong;Kim, Nayoung
    • Molecules and Cells
    • /
    • v.45 no.6
    • /
    • pp.403-412
    • /
    • 2022
  • Hypoxia leads to significant cellular stress that has diverse pathological consequences such as cardiovascular diseases and cancers. MicroRNAs (miRNAs) are one of regulators of the adaptive pathway in hypoxia. We identified a hypoxia-induced miRNA, miR-34c, that was significantly upregulated in hypoxic human umbilical cord vein endothelial cells (HUVECs) and in murine blood vessels on day 3 of hindlimb ischemia (HLI). miR-34c directly inhibited BCL2 expression, acting as a toggle switch between apoptosis and autophagy in vitro and in vivo. BCL2 repression by miR-34c activated autophagy, which was evaluated by the expression of LC3-II. Overexpression of miR-34c inhibited apoptosis in HUVEC as well as in a murine model of HLI, and increased cell viability in HUVEC. Importantly, the number of viable cells in the blood vessels following HLI was increased by miR-34c overexpression. Collectively, our findings show that miR-34c plays a protective role in hypoxia, suggesting a novel therapeutic target for hypoxic and ischemic diseases in the blood vessels.

Pharmacokinetics and Bioavailability of Oral Cephalosporins, KR-984055 and its Prodrugs, KR-999001 and KR-999002, in the Red

  • Park, Yong-Soon;Woo, Su-Kyung;Jung, Myung-Hee;Kwon, Kwang-il
    • Archives of Pharmacal Research
    • /
    • v.26 no.1
    • /
    • pp.83-88
    • /
    • 2003
  • KR-984055 is a new oral cephalosporin antibiotic with activity against both gram-positive and gram-negative bacteria. Lipophilic ester-type prodrugs of KR-984055, i.e., KR-999001 and KR-999002, have been synthesized in an attempt to increase the oral bioavailability of this broad-spectrum antibiotic agent. In this study we determined the oral bioavailability of KR-984055 and its prodrugs in the rat, and evaluated the pharmacokinetic model that best describes the plasma concentration behavior following single intravenous (IV) and oral single dose. In addition, concentrations in plasma as well as biliary and urinary recovery of KR-984055 were determined. Also, protein binding of KR-984055 in plasma was examined in vitro. The degree of protein binding of KR-984055 was in the range of 92.09~94.77%. KR-984055 exhibited poor oral bioavailability (7.02$\pm$1.58%). The observed oral bioavailabilities of KR-984055 from KR-999001 and KR-999002 were 38.77$\pm$2.81 % and 39.81$\pm$5.25%, respectively. These data were calculated from the levels of free KR-984055 in plasma. Oral KR-999001 and KR-999002 were not recovered from plasma, suggesting that it was readily cleaved to free KR-984055. KR-999001 and KR-999002 appear to be an efficient oral prod rug of KR-984055 that deserved further clinical evaluation in human.

Sodium butyrate inhibits high glucose-induced inflammation by controlling the acetylation of NF-κB p65 in human monocytes

  • Ha-Rin Moon;Jung-Mi Yun
    • Nutrition Research and Practice
    • /
    • v.17 no.1
    • /
    • pp.164-173
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Hyperglycemia is a major cause of diabetes and diabetesrelated diseases. Sodium butyrate (NaB) is a short-chain fatty acid derivative that produces dietary fiber by anaerobic bacterial fermentation in the large intestine and occurs in foods, such as Parmesan cheese and butter. Butyrate has been shown to prevent obesity, improve insulin sensitivity, and ameliorate dyslipidemia in diet-induced obese mice. Therefore, this study examined the effects and mechanism of NaB on the secretion of inflammatory cytokines induced by high glucose (HG) in THP-1 cells. MATERIALS/METHODS: THP-1 cells were used as an in vitro model for HG-induced inflammation. The cells were cultured under normal glycemic or hyperglycemic conditions with or without NaB (0-25 μM). Western blotting and quantitative polymerase chain reaction were used to evaluate the protein and mRNA levels of nuclear factor-κB (NF-κB), interleukin-6, tumor necrosis factor-α, acetylated p65, acetyl CREB-binding protein/p300 (CBP/p300), and p300 using THP-1 cells. Histone acetyltransferase (HAT), histone deacetylase (HDAC), and pro-inflammatory cytokine secretion activity were analyzed using an enzyme-linked immunosorbent assay. RESULTS: HG significantly upregulated histone acetylation, acetylation levels of p300, NF-κB activation, and inflammatory cytokine release in THP-1 cells. Conversely, the NaB treatment reduced cytokine release and NF-κB activation in HG-treated cells. It also significantly reduced p65 acetylation, CBP/p300 HAT activity, and CBP/p300 gene expression. In addition, NaB decreased the interaction of p300 in acetylated NF-κB and TNF-α. CONCLUSIONS: These results suggest that NaB suppresses HG-induced inflammatory cytokine production through HAT/HDAC regulation in monocytes. NaB has the potential for preventing and treating diabetes and its related complications.