• Title/Summary/Keyword: Human hepatocyte

Search Result 94, Processing Time 0.028 seconds

Primary Culture of Human Hepatocytes from Small Size Sample

  • Oh, Goo-Taeg;Ahn, Chang-Joon;Ahn, Byung-Min;Hyun, Byung-Hwa;Choi, Jae-Yoon;Kim, Hwan-Mook
    • Toxicological Research
    • /
    • v.8 no.2
    • /
    • pp.285-302
    • /
    • 1992
  • Human and rat hepatocytes were isolated by nonperfusion method and cultured for longer than 5 days. Human liver biopsy sample and rat liver were used as hepatocyte source. Several physical and chemical factors which were influencing on hepatocyte isolation procedure were examined and a batch isolation procedure was established for small size sample of rat liver. Isolated hepatocytes showed normal morphlologica characteristics in microscopy and electron microscopical examinations and a morphologica response to phalloidin. Isolated cells were cultured as a monolayer and proven to have intact morphological characteristics for longer than 15 days. Because human liver sample is harder and tighter compared with rat liver, a standard procedure for rat hepatocytes was slightly modified to reduce mechanical damage. Similarly with rat hepatocytes, isolated human hepatocytes showed a normal morphological characteristics and could be cultured for longer than 15days. Human and rat hepatocytes were examined on their functional integrities including cytochrome-P450 related enzyme activity and it's inducibility, hormonal inducibility of AIB uptake and TAT activity, albumin synthesis, DNA synthesis, cellular protein maintenance. In all parameters used in the present study, human and rat hepatocytes showed normal functional characteristics.

  • PDF

Function of hepatocyte growth factor in gastric cancer proliferation and invasion

  • Koh, Sung Ae;Lee, Kyung Hee
    • Journal of Yeungnam Medical Science
    • /
    • v.37 no.2
    • /
    • pp.73-78
    • /
    • 2020
  • Cancer incidence has been increasing steadily and is the leading cause of mortality worldwide. Gastric cancer is still most common malignancy in Korea. Cancer initiation and progression are multistep processes involving various growth factors and their ligands. Among these growth factors, we have studied hepatocyte growth factor (HGF), which is associated with cell proliferation and invasion, leading to cancer and metastasis, especially in gastric cancer. We explored the intercellular communication between HGF and other surface membrane receptors in gastric cancer cell lines. Using complimentary deoxyribonucleic acid microarray technology, we found new genes associated with HGF in the stomach cancer cell lines, NUGC-3 and MKN-28, and identified their function within the HGF pathway. The HGF/N-methyl-N'-nitroso-guanidine human osteosarcoma transforming gene (c-MET) axis interacts with several molecules including E-cadherin, urokinase plasminogen activator, KiSS-1, Jun B, and lipocalin-2. This pathway may affect cell invasion and metastasis or cell apoptosis and is therefore associated with tumorigenesis and metastasis in gastric cancer.

Apoptotic effect of formaldehyde in cultured human hepatocyte cell lines (인간 간세포주 에서 포름알데히드에 의한 세포 사멸 효과)

  • Park, Soo-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.4
    • /
    • pp.462-467
    • /
    • 2009
  • Exposure of formaldehyde (FA), one of the major compounds in pesticides and in the onset of sick house syndrome, has been implicated in the development of diverse diseases. Liver is a very important organ to body metabolism and drug detoxification. Apotosis of hepatocytes is associated with the onset of liver diseases such as hepatitis. However, the apoptotic effect of FA in hepatocytes is not clear. Therefore, this study was conducted to investigate the effect of FA on the apoptosis in HepG2 cells, a human hepatocyte cell line. As a result, FA (> $500\;{\mu}M$) decreased cell viability and increased lactate dehydrogenase activity in HepG2 cells, which was blocked by the treatment of vitamin E and N-acetylcysteine (NAC). In addition, FA decreased glutathione (GSH) contents and Bcl-2 levels, while increasing lipid peroxide formation and Bax levels. It also cleaved caspase-3 form, which was blocked by the treatment of vitamin E and NAC. It is insisted that FA induced apoptosis via oxidative stress in human hepatocytes.

Metronidazole Reduced Ammonia Toxicity in Human Hep G2 cell and Rat Hepatocytes (Hep G2 세포와 rat 간세포에서 Metronidazole에 의한 암모니아 독성 감소)

  • Kim, Bo-Ae;Kim, Hyun-Jung;Kim, You-Young
    • KSBB Journal
    • /
    • v.23 no.5
    • /
    • pp.381-386
    • /
    • 2008
  • Lipophilic ammonia is toxic gas and can easily diffuse across cell membranes. Excess ammonia is implicated in the pathogenesis of several metabolic disorders including hepatic encephalopathy and may result in the death. The purpose of this study was to clarify the inhibition effect of metronidazole on liver cell damage due to ammonia in human Hep G2 cell and rat hepatocytes. The effects of metronidazole were studied in ammonium chloride treated human Hep G2 cell (75 mM) and rat hepatocyte (100 mM) following $0.1{\mu}M$ metronidazole treatment. In MTZ+AC group, cell viabilities increased prominently and LDH activities decreased over 25% than AC group. Furthermore, ammonia level according to ammonium chloride treatment reduced over 30% and lipid peroxidation as an index of cell membrane damage decreased more than twice. By comparison with control, catalase activity showed more than 30% reduction in AC group while less than 10% reduction in MTZ+AC group, respectively. In addition, MTZ+AC group showed the similar cell structure as control in cell morphology study by using light microscope, and represented fluorescent intensity decrement compared with AC group in fluorescent microscopic study with avidin-TRITC fluorescent dye. And cleaved PARP expression due to ammonia reduced twofold or more in MTZ+AC group. As the results suggest, metronidazole may protect the liver cell by inhibiting cell damages due to ammonia and be used for an effective antagonist of ammonia in hyperammonemia.

Effect of Bisphenol-A on Vitellogenin Synthesis and Estrogen-Estrogen Receptor Binding Activity in the Primary Hepatocyte Cultures of Rainbow Trout, Oncorhynchus mykiss

  • Hwang Un-Gi;Kang Ju-Chan
    • Fisheries and Aquatic Sciences
    • /
    • v.5 no.4
    • /
    • pp.251-257
    • /
    • 2002
  • Effects of bisphenol-A (BPA) on vitellogenin (VTG) synthesis and estrogen-estrogen receptor $(E_2- ER)$ binding activity were examined in primary hepatocyte cultures of rainbow trout, Oncorhynchus mykiss. Hepatocytes were precultured for 2 days and then $estradiol-17\beta\;(E_2,\;2\times10^{-6}M)\;BPA\;(10^{-5}-10^{-8}M)$ and/or 4-hydroxy-tamoxifen $(4-OHT,\;10^{-6} M)$ were simultaneously added to the incubation medium. Hepatocytes were cultured for 5 more days and then spent medium was analyzed by SDS-PAGE for VTG production. The addition of BPA to the incubation medium had no effect on the viability of hepatocytes in the culture. On the other hand, BPA increased VTG production in a concentration-dependent way and a significant increment occurred at BPA concentrations greater than $10^{-6}$M. Although VTG was increased by the addition of $E_2\;(2\times10^{-6}\;M)\;or\;BPA\;(10^{-5}M)$, its were reduced by a simultaneous 4-OHT $(10^{-6}\;M)$ addition. BPA inhibited $E_2-human$ ER binding activity by $72\%$ at $10^{-5}$ M of BPA. These results suggested that BPA induced VTG synthesis by BPA-ER binding activity in the hepatocyte of rainbow trout.

Hepatogenic Potential of Umbilical Cord Derived-Stem Cells and Human Amnion Derived-Stem Cells (사람의 제대 및 양막유래 줄기세포의 간세포로의 분화)

  • Kim, Ji-Young;Lee, Yoon-Jung;Park, Se-Ah;Kang, Hyun-Mi;Kim, Kyung-Sik;Cho, Dong-Jae;Kim, Hae-Kwon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.35 no.4
    • /
    • pp.247-265
    • /
    • 2008
  • Objectives: Many types of liver diseases can damage regenerative potential of mature hepatocytes, hepatic progenitor cells or oval cells. In such cases, a stem cell-based therapy can be an alternative therapeutic option. We examined whether human amnion-derived mesenchymal stem cells (HAM) and human umbilical cord-derived stem cells (HUC) could differentiate into hepatocyte-like cells as therapeutic cells for the liver diseases. Methods: HAM and HUC were isolated from the amnion and umbilical cord of the volunteers after a caesarean section with informed consent. In order to differentiate these cells into hepatocyte-like cells, cells were cultivated in hepatogenic medium using culture plates coated with fibronectin. Effects of hepatocyte growth factor, L-ascorbic acid 2-phosphate, insulin premixture fibroblast growth gactor 4, dimethylsulfoxide, oncostatin M and/or dexamethasone were examined on the hepatic differentiation. After differentiation, the cells were analyzed by RT-PCR, immunocytochemistry, immunoblotting, albumin ELISA, urea assay and periodic acid-schiffs staining. Results: Initial fibroblast-like appearance of HAM and HUC changed to a round shape during culture in the hepatogenic medium. However, in all hepatogenic conditions examined, HUC secreted more amounts of albumin or urea into medium than HAM. Expression of some of hepatocyte-specific genes increased and expression of new genes were observed in HUC following cultivation in hepatogenic medium. Results of immunocytochemistry and immunoblotting analyses demonstrated that HUC secreted albumin into the culture medium. PAS staining further demonstrated that HUC could store glycogen inside of the cells. Conclusions: Both HUC and HAM could differentiate into albumin-secreting, hepatocyte-like cells. Under the same hepatogenic conditions examined, HUC more efficiently differentiated into hepatocyte-like cells compared with the HAM. The results suggest that HUC and HAM could be used as sources of stem cells for the cell-based therapeutics such as in liver diseases.

Effects of Citrus Flavonoid, Hesperidin and Naringin on Lipid Metabolism in HepG2 Cells (간배양 HepG2 세포의 지질대사에 미치는 Hesperidin 및 Naringin의 영향)

  • 김범규;차재영;조영수
    • Journal of Life Science
    • /
    • v.9 no.4
    • /
    • pp.382-388
    • /
    • 1999
  • The effects of citrus flavonoids, hesperidin and naringin, on the lipid metabolism were investigated in cultured human hepatocyte HePG2 cells. HepG2 cells were cultured for 6 h and 24 h to the control medium or the media containing hespridin and narigin, which concentrations were 0.5 and 5.0 mg/$m\ell$. There were no significant effects on cell proliferation and cellular protein content, except for increased in these parameters by adding both citrus flavonoids (0.5 mg/$m\ell$). The cellular content of triacylglycerol after 6 h incubation with 0.5 mg/$m\ell$ hesperidin and naringin was markedly increased, and after 24 h incubation that was decreased in both citrus flavonoids supplementation. The supplementation of 5.0 mg/$m\ell$ hesperidin caused a marked decrease in the cellular cholesterol content following 6 h incubation, and that was also reduced markdly, in a dose-dependent manner, during incubation for 24 h. However, there was no significant difference in the cellular cholesterol content in medium supplemented with naringin. The effect of hesperidin and naringin on acyl-CoA: cholesterol acyltransferase (ACAT) activity was studied in vivo and in vitro. The data confirmed that hesperidin inhibit ACAT activity in vivo and in vitro, whereas naringin had no such effect on ACAT activity in vivo but not in vitro. The present study suggests that hesperidin reduces the cellular triacyglycerol and cholesterol contents in human hepatocyte HepG2 cells.

  • PDF