• Title/Summary/Keyword: Human hepatocellular carcinoma cells

Search Result 160, Processing Time 0.036 seconds

Inhibition of Growth and Induction of Differentiation of SMMC-7721 Human Hepatocellular Carcinoma Cells by Oncostatin M

  • Kong, N.;Zhang, X.M.;Wang, H.T.;Mu, X.P.;Han, H.Z.;Yan, W.Q.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.747-752
    • /
    • 2013
  • Oncostatin M (OSM) is a multifunctional cellular regulator acting on a wide variety of cells, which has potential roles in the regulation of gene activation, cell survival, proliferation and differentiation. Previous studies have shown that OSM can induce morphological and/or functional differentiation and maturation of many tumor cells. However, the action of OSM on the induction of differentiation of human hepatocellular carcinoma (HCC) has not been reported. Here, we investigated the effects of different concentrations of OSM on human HCC cell line SMMC-7721 growth, proliferation, cell cycling, apoptosis and differentiation in vitro. Cell growth was determined via MTT assay, proliferation by cell cycle analysis, apoptosis by flow cytometry, morphology by transmission electronic microscopy, and cell function by detection of biochemical markers. Our results demonstrated that OSM strongly inhibited the growth of SMMC-7721 cells in a dose-dependent manner, associated with decreased clonogenicity. Cell cycle analysis revealed a decreased proportion of cells in S phase, with arrest at G0/G1. The apotosis rate was increased after OSM treatment compared to the control. These changes were associated with striking changes in cellular morphology, toward a more mature hepatic phenotype, accompanied by significant reduction of the expression of AFP and specific activity of ${\gamma}$-GT, with remarkable increase in secretion of albumin and ALP activity. Taken together, our findings indicate that OSM could induce the differentiation and reduce cell viability of SMMC-7721 cells, suggesting that differentiation therapy with OSM offers the opportunity for therapeutic intervention in HCC.

Cytotoxicity Assessments of Portulaca oleracea and Petroselinum sativum Seed Extracts on Human Hepatocellular Carcinoma Cells (HepG2)

  • Farshori, Nida Nayyar;Al-Sheddi, Ebtesam Saad;Al-Oqail, Mai Mohammad;Musarrat, Javed;Al-Khedhairy, Abdulaziz Ali;Siddiqui, Maqsood Ahmed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6633-6638
    • /
    • 2014
  • The Pharmacological potential, such as antioxidant, anti-inflammatory, and antibacterial activities of Portulaca oleracea (PO) and Petroselinum sativum (PS) extracts are well known. However, the preventive properties against hepatocellular carcinoma cells have not been explored so far. Therefore, the present investigation was designed to study the anticancer activity of seed extracts of PO and PS on the human hepatocellular carcinoma cells (HepG2). The HepG2 cells were exposed with $5-500{\mu}g/ml$ of PO and PS for 24 h. After the exposure, cell viability by 3-(4,5-dimethylthiazol-2yl)-2,5-biphenyl tetrazolium bromide (MTT) assay, neutral red uptake (NRU) assay, and cellular morphology by phase contrast inverted microscope were studied. The results showed that PO and PS extracts significantly reduced the cell viability of HepG2 in a concentration dependent manner. The cell viability was recorded to be 67%, 31%, 21%, and 17% at 50, 100, 250, and $500{\mu}g/ml$ of PO, respectively by MTT assay and 91%, 62%, 27%, and 18% at 50, 100, 250, and $500{\mu}g/ml$ of PO, respectively by NRU assay. PS exposed HepG2 cells with $100{\mu}g/ml$ and higher concentrations were also found to be cytotoxic. The decrease in the cell viability at 100, 250, and $500{\mu}g/ml$ of PS was recorded as 70%, 33%, and 15% by MTT assay and 63%, 29%, and 17%, respectively by NRU assay. Results also showed that PO and PS exposed cells reduced the normal morphology and adhesion capacity of HepG2 cells. HepG2 cells exposed with $50{\mu}g/ml$ and higher concentrations of PO and PS lost their typical morphology, become smaller in size, and appeared in rounded bodies. Our results demonstrated preliminary screening of anticancer activity of Portulaca oleracea and Petroselinum sativum extracts against HepG2 cells, which can be further used for the development of a potential therapeutic anticancer agent.

Anticancer Potential of an Ethanol Extract of Saussurea Involucrata against Hepatic Cancer Cells in vitro

  • Byambaragchaa, Munkhzaya;Cruz, Joseph Dela;Kh, Altantsetseg;Hwang, Seong-Gu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7527-7532
    • /
    • 2014
  • Saussurea involucrata is a Mongolian medicinal plant well known for its effects in promoting blood circulation, and anti-inflammation and analgesic functions. Earlier studies reported that Saussurea involucrata has anticancer activity. The purpose of this study was to confirm the anticancer activity of an ethanol extract of Saussurea involucrata against hepatic cancer and elucidate its mechanisms of action. Hepatocellular carcinoma cells were tested in vitro for cytotoxicity, AO/EB staining for apoptotic cells, apoptotic DNA fragmentation and cell cycle distribution in response to Saussurea involucrata extract (SIE). The mRNA expression of caspase-3,-9 and Cdk2 and protein expression of caspase-3,-9, PARP, XIAP, Cdk2 and p21 were analyzed through real time PCR and Western blotting. Treatment with SIE inhibited HepG2 cell proliferation dose- and time-dependently, but SIE only exerted a modest cytotoxic effect on a viability of Chang human liver cells. Cells exposed to SIE showed typical hallmarks of apoptotic cell death. Cell cycle analysis revealed that SIE caused G1-phase arrest in HepG2 cells. In conclusion, Saussurea involucrata ethanol extract has potential cytotoxic and apoptotic effects on human hepatocellular carcinoma cells. Its mechanism of action might be associated with the inhibition of DNA synthesis, cell cycle (G1) arrest and apoptosis induction through up-regulation of the protein expressions of caspase-3,-9 a nd p21, degradation of PARP and down-regulation of the protein expression of Cdk2 and XIAP.

Growth Inhibitory Patterns by Adenoviral p16 Transduction in HCC Cell Lines with Different pRB Status

  • Kim Keun-Cheol
    • Biomedical Science Letters
    • /
    • v.11 no.4
    • /
    • pp.421-427
    • /
    • 2005
  • To evaluate the diagnostic significance of p16 overexpression in human hepatocellular carcinoma (HCC), we analyzed p16 status and growth inhibitory patterns by p16 overexpression in HCC cell lines having different pRE status. SKHep1 and SNU449 cells show homozygous deletion of p16. The p16 gene in SNU398 cell is inactivated at posttranscription level. Adenovira1-p16 (Ad-p16) infection inhibits the cell growth in Hep3B, SNU398, and SNU449. Failure of growth inhibition in SKHepl results from the low transduction efficiency of adenovirus. The p16-mediated growth inhibition shows G 1 phase arrest in pRE-positive SNU449 but not in pRE-negative Hep3B. These results suggest that therapeutic efficacy of p16 gene might be considered on the transduction efficiency and the toxicity of adenoviral vector. Beside, growth inhibitory effect of p16 could be exerted through either pRE-dependent or -independent pathway.

  • PDF

Synthesis of Novel Allylthio Heterocyclo(or aryl)alkylaminopyridazines and Their Anticancer Activity against SK-Hep-1 Cells

  • Lee, Myung-Sook;Kim, Eun-Sook;Moon, A-Ree;Park, Myung-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.83-91
    • /
    • 2009
  • To develop new anticancer agents, 3-allylthio-6-aminopyridazine derivatives were synthesized from maleic anhydrides or phthalic anhydrides by formation of a pyridazine nucleus, dichlorination, allylthiolation and amination. The pyridazine nuclei were obtained by condensing a hydrazine monohydrate with maleic anhydride. An allylthio group as a pharmacologically active group was introduced into one side of a pyridazine ring. Arylalkylamines with benzene or pyridine moieties or heterocycloalkylamines with heterocycle moieties such as morpholine, piperidine, or pyrrolidine were also introduced into the para-position of allylthio pyridazine. These new compounds showed antiproliferative activities against SK-Hep-1 human liver cancer cells in MTT assays. These compounds are thus promising candidates for chemotherapy of hepatocellular carcinomas. Two compounds, 20c and 22a, showed higher potencies for inhibiting growth of hepatocellular carcinoma cells than did K6 ($ID_50$=1.08 mM). This suggests the potential anticancer activity of these two compounds.

Silencing of NUF2 Inhibits Tumor Growth and Induces Apoptosis in Human Hepatocellular Carcinomas

  • Liu, Qiang;Dai, She-Jiao;Li, Hong;Dong, Lei;Peng, Yu-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8623-8629
    • /
    • 2014
  • Background: As an important component of the NDC80 kinetochore complex, NUF2 is essential for kinetochore-microtubule attachment and chromosome segregation. Previous studies also suggested its involvement in development of various kinds of human cancers, however, its expression and functions in human hepatocellular carcinoma (HCC) are still unclear. Materials and Methods: In the present study, we aimed to test the hypothesis that NUF2 is aberrant in human HCCs and associated with cell growth. Results: Our results showed significantly elevated expression of NUF2 in human HCC tissues compared to adjacent normal tissues, and high expression of NUF2 in HCC cell lines. Using lentivirus-mediated silencing of NUF2 in HepG2 human HCC cells, we found that NUF2 depletion markedly suppressed proliferation and colony formation capacity in vitro, and dramatically hampered tumor growth of xenografts in vivo. Moreover, NUF2 silencing could induce cell cycle arrest and trigger cell apoptosis. Additionally, altered levels of cell cycle and apoptosis related proteins including cyclin B1, Cdc25A, Cdc2, Bad and Bax were also observed. Conclusions: In conclusion, these results demonstrate that NUF2 plays a critical role in the regulation of HCC cell proliferation and apoptosis, indicating that NUF2 may serve as a potential molecular target for therapeutic approaches.

Anticancer Effect of Doenjang in in vitro Sulforhodamine B (SRB) Assay (된장의 in vitro Sulforhodamine B (SRB) Assay에 의한 암세포 증식 억제 효과)

  • 이숙희;임선영;박건영
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.1
    • /
    • pp.240-245
    • /
    • 1999
  • Growth inhibitory effect of doenjang(Korean soypaste) methanol extracts in SRB assay using AGS human gastric adenocarcinoma cell, Hep 3B human hepatocellular carcinoma cell and HT 29 human colon cancer cell was studied. The treatment of doenjang methanol extracts(2mg/assay) to the AGS, Hep 3B and HT 29 cancer cells inhibited the growth of the cancer cells by 55%, 60%, and 71%, respectively. Doenjang methanol extracts exhibited the highest inhibitory effect among other soybean fermented foods and original materials in the SRB assay. In addition, to separate active compounds of doenjang methanol extracts, we fractionated the doenjang with hexane, methanol, dichloromethane, ethylacetate and butanol. Growth inhibitory effect on the AGS, Hep 3B, HT 29 and MG 63 cancer cells was the highest in the fractions of dichloromethane and ethylacetate among other solvent fractions of the doenjang. These results showed that some compounds contained in the fractions of dichloromethane and ethylacetate might play a role on the anticanceric effect of doenjang.

  • PDF

Effects of Water Extract from fermented Chaga Mushroom(Inonotus obliquus) on the Proliferation of Human Cancer Cell Lines. (발효 차가버섯 추출물이 인체 종양세포주 증식에 미치는 영향)

  • Cha, Jae-Young;Park, Sang-Hyun;Heo, Jin-Sun;Cho, Young-Su
    • Journal of Life Science
    • /
    • v.17 no.5 s.85
    • /
    • pp.671-677
    • /
    • 2007
  • This study was performed to investigate the effect of the water-extract from non-fermented or fermented Chaga mushrooms (Inonotus obliquus) on the proliferation and apoptosis of the NIH3T3 mouse normal fibroblast cells and various human cancer cell lines including HCT-15 human colon carcinoma, AGS human gastric carcinoma, MCF-7 human breast adenocarcinoma, Hep3B human hepatocellular carcinoma and HeLa human cervical carcinoma using MTT(3-[4,5-dimethylthiazol-2-yl] -2,5-diphenyl tetrazolium bromide) assay and DNA fragmentation. In an anti-cancer test using various human cancer cells, fermented Chaga mushroom extract showed higher antiproliferating effect than that of non-fermented Chaga mushroom extract. Mouse normal NIH3T3 cells were exhibited 80% above survival under fermented or non-fermented Chngn mushroom extract of various concentrations(0, 0.5 and 1 mg/ml). Fermented Chaga mushroom extract significantly inhibited cell growth on HCT-15 cells in a dose-dependent manner. HCT-15 cells treated with non-fermented or fermented Chaga mushrooms extract produced a distinct oligonucleosomal ladder with different sizes of DNA fragments, a typical characteristic of cells undergoing apoptosis. These results suggest that fermented Chaga mushroom extract suppresses growth of HCT-15 human colon carcinoma cells through apoptosis.

Antitumor Constituents from Anthriscus Sylvestris (L.) Hoffm

  • Chen, Hui;Jiang, He-Zhong;Li, Yong-Chao;Wei, Guo-Qing;Geng, Yun;Ma, Chao-Ying
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2803-2807
    • /
    • 2014
  • Bioassay-guided chemical investigation of the roots of Anthriscus sylvestris (L.) Hoffm. resulted in the isolation of nine compounds, whose structures were determined by spectroscopic methods. Compound 1 was isolated from this plant for the first time and compounds 3 and 9 were first found from this genus. Different polar fractions of A. sylvestris extract and compounds 1, 6-8 and 9 were evaluated for antitumor activities against HepG2 (human hepatocellular carcinoma), MG-63 (human osteosarcoma cells), B16 (melanoma cells) and HeLa (human cervical carcinoma cells) lines by the MTT method. The petroleum ether fraction of A. sylvestris extract exhibited excellent inhibitory activity with an $IC_{50}$ value of $18.3{\mu}g/ml$. Among the isolates from the petroleum ether fraction, compound 7 showed significant inhibition against the growth of the four tumor cells with $IC_{50}$ values ranging from $12.2-43.3{\mu}g/ml$.

Parthenolide-Induced Apoptosis, Autophagy and Suppression of Proliferation in HepG2 Cells

  • Sun, Jing;Zhang, Chan;Bao, Yong-Li;Wu, Yin;Chen, Zhong-Liang;Yu, Chun-Lei;Huang, Yan-Xin;Sun, Ying;Zheng, Li-Hua;Wang, Xue;Li, Yu-Xin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.12
    • /
    • pp.4897-4902
    • /
    • 2014
  • Purpose: To investigate the anticancer effects and underlying mechanisms of parthenolide on HepG2 human hepatocellular carcinoma cells. Materials and Methods: Cell viability was assessed by MTT assay and cell apoptosis through DAPI, TUNEL staining and Western blotting. Monodansylcadaverin(MDC) and AO staining were used to detect cell autophagy. Cell proliferation was assessed by Ki67 immunofluorescence staining. Results: Parthenolide induced growth inhibition in HepG2 cells. DAPI and TUNEL staining showed that parthenolide could increase the number of apoptotic nuclei, while reducing the expression of the anti-apoptotic protein Bcl-2 and elevating the expression of related proteins, like p53, Bax, cleaved caspase9 and cleaved caspase3. Parthenolide could induce autophagy in HepG2 cells and inhibited the expression of proliferation-related gene, Ki-67. Conclusions: Parthenolide can exert anti-cancer effects by inducing cell apoptosis, activating autophagy and inhibiting cell proliferation.