• Title/Summary/Keyword: Human failure event

Search Result 31, Processing Time 0.025 seconds

RADIATION DAMAGE IN THE HUMAN BODY ACUTE RADIATION SYNDROME AND MULTIPLE ORGAN FAILURE

  • AKASHI, MAKOTO;TAMURA, TAIJI;TOMINAGA, TAKAKO;ABE, KENICHI;HACHIYA, MISAO;NAKAYAMA, FUMIAKI
    • Nuclear Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.231-238
    • /
    • 2006
  • Whole-body exposure to high-dose radiation causes injury involving multiple organs that depends on their sensitivity to radiation. This acute radiation syndrome (ARS) is caused by a brief exposure of a major part of the body to radiation at a relatively high dose rate. ARS is characterized by an initial prodromal stage, a latent symptom-free period, a critical or manifestation phase that usually takes one of four forms (three forms): hematologic, gastrointestinal, or cardiovascular and neurological (neurovascular), depending upon the exposure dose, and a recovery phase or death. One of the most important factors in treating victims exposed to radiation is the estimation of the exposure dose. When high-dose exposure is considered, initial dose estimation must be performed in order to make strategy decisions for treatment as soon as possible. Dose estimation can be based on onset and severity of prodromal symptoms, decline in absolute lymphocyte count post exposure, and chromosomal analysis of peripheral blood lymphocytes. Moreover, dose assessment on the basis of calculation from reconstruction of the radiation event may be required. Experience of a criticality accident occurring in 1999 at Tokai-mura, Japan, showed that ARS led to multiple organ failure (MOF). This article will review ARS and discuss the possible mechanisms of MOF developing from ARS.

The Historical Lesson of the Team 10's Break Away from the CIAM (Team 10의 CIAM 탈퇴가 오늘 우리에게 주는 역사적(歷史的) 교훈(敎訓))

  • Lee, Hee-Bong
    • Journal of architectural history
    • /
    • v.7 no.3 s.16
    • /
    • pp.137-149
    • /
    • 1998
  • The purpose of this study is to learn from a lesson of the historical fact, the Team 10's break away from the CIAM, which is selected as the most important event in the whole 20th century architecture by author as a historian. The CIAM, organized in 1928 by leading European architects in order to propose new architecture in the industrial era, expanded to the world, met almost annually with an idea of economic efficiency, new functional order, and industrial production for thirty years. Young architects had conflicted with old established group from 6th congress, and after 10th congress they met independently in 1959; the CIAM was disappeared and the Team 10 was born. Main issue of the break-away was human aspect. The Team 10 started from real man, concept of 'human contact', 'sense of community', and 'belonging' instead of abstract functional order. Although CIAM did not suggest inhumane architecture, their biological criteria with sunlight, air, sufficient site became physical determinism. Critique against the Team 10, unsuccess for making humane architecture leads to underestimation like a generational hegemony struggle. However, architect is not specialist of life but form. Historical reevaluation for Team 10 should be that they are the first group to raise an human issue in architecture. Success or not to solve the problem belongs to another domain. After 1960, modern architecture was attacked from the common people, not clients but 'users'. Academic circle tried to solve the problem with behavioral approach through a clear process, 'design method' and with phenomenological approach on real human experience. However practice became reactionary tendency, to make form a little complex, they became post-modern and deconstruction form. Failure of the Team 10's form proved that a complex form does not necessarily make a good life of people. In the Korean historic situation of colony ruling, confusion of liberation, and the War, we did not know the existence of both CIAM and Team 10. After 1970s' economic development, we have just copied Western form from Modern via Post-Modern to Deconstruction. If we make architecture people mattered, we should start from the basic, learning from the Team's break-away, instead of copying.

  • PDF

Development of a Fire Human Reliability Analysis Procedure for Full Power Operation of the Korean Nuclear Power Plants (국내 전출력 원전 적용 화재 인간신뢰도분석 절차 개발)

  • Choi, Sun Yeong;Kang, Dae Il
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.1
    • /
    • pp.87-96
    • /
    • 2020
  • The purpose of this paper is to develop a fire HRA (Human Reliability Analysis) procedure for full power operation of domestic NPPs (Nuclear Power Plants). For the development of fire HRA procedure, the recent research results of NUREG-1921 in an effort to meet the requirements of the ASME/ANS PRA Standard were reviewed. The K-HRA method, a standard method for HRA of a domestic level 1 PSA (Probabilistic Safety Assessment) and fire related procedures in domestic NPPs were reviewed. Based on the review, a procedure for the fire HRA required for a domestic fire PSA based on the K-HRA method was developed. To this end, HRA issues such as new operator actions required in the event of a fire and complexity of fire situations were considered. Based on the four kinds of HFE (Human Failure Event) developed for a fire HRA in this research, a qualitative analysis such as feasibility evaluation was suggested. And also a quantitative analysis process which consists of screening analysis and detailed analysis was proposed. For the qualitative analysis, a screening analysis by NUREG-1921 was used. In this research, the screening criteria for the screening analysis was modified to reduce vague description and to reflect recent experimental results. For a detailed analysis, the K-HRA method and scoping analysis by NUREG-1921 were adopted. To apply K-HRA to fire HRA for quantification, efforts to modify PSFs (Performance Shaping Factors) of K-HRA to reflect fire situation and effects were made. For example, an absence of STA (Shift Technical Advisor) to command a fire brigade at a fire area is considered and the absence time should be reflected for a HEP (Human Error Probability) quantification. Based on the fire HRA procedure developed in this paper, a case study for HEP quantification such as a screening analysis and detailed analysis with the modified K-HRA was performed. It is expected that the HRA procedure suggested in this paper will be utilized for fire PSA for domestic NPPs as it is the first attempt to establish an HRA process considering fire effects.

ROLE OF PASSIVE SAFETY FEATURES IN PREVENTION AND MITIGATION OF SEVERE PLANT CONDITIONS IN INDIAN ADVANCED HEAVY WATER REACTOR

  • Jain, Vikas;Nayak, A.K.;Dhiman, M.;Kulkarni, P.P.;Vijayan, P.K.;Vaze, K.K.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.625-636
    • /
    • 2013
  • Pressing demands of economic competitiveness, the need for large-scale deployment, minimizing the need of human intervention, and experience from the past events and incidents at operating reactors have guided the evolution and innovations in reactor technologies. Indian innovative reactor 'AHWR' is a pressure-tube type natural circulation based boiling water reactor that is designed to meet such requirements, which essentially reflect the needs of next generation reactors. The reactor employs various passive features to prevent and mitigate accidental conditions, like a slightly negative void reactivity coefficient, passive poison injection to scram the reactor in event of failure of the wired shutdown systems, a large elevated pool of water as a heat sink inside the containment, passive decay heat removal based on natural circulation and passive valves, passive ECC injection, etc. It is designed to meet the fundamental safety requirements of safe shutdown, safe decay heat removal and confinement of activity with no impact in public domain, and hence, no need for emergency planning under all conceivable scenarios. This paper examines the role of the various passive safety systems in prevention and mitigation of severe plant conditions that may arise in event of multiple failures. For the purpose of demonstration of the effectiveness of its passive features, postulated scenarios on the lines of three major severe accidents in the history of nuclear power reactors are considered, namely; the Three Mile Island (TMI), Chernobyl and Fukushima accidents. Severe plant conditions along the lines of these scenarios are postulated to the extent conceivable in the reactor under consideration and analyzed using best estimate system thermal-hydraulics code RELAP5/Mod3.2. It is found that the various passive systems incorporated enable the reactor to tolerate the postulated accident conditions without causing severe plant conditions and core degradation.

Development of a simulation method for the subsea production system

  • Woo, Jong Hun;Nam, Jong Ho;Ko, Kwang Hee
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.173-186
    • /
    • 2014
  • The failure of a subsea production plant could induce fatal hazards and enormous loss to human lives, environments, and properties. Thus, for securing integrated design safety, core source technologies include subsea system integration that has high safety and reliability and a technique for the subsea flow assurance of subsea production plant and subsea pipeline network fluids. The evaluation of subsea flow assurance needs to be performed considering the performance of a subsea production plant, reservoir production characteristics, and the flow characteristics of multiphase fluids. A subsea production plant is installed in the deep sea, and thus is exposed to a high-pressure/ low-temperature environment. Accordingly, hydrates could be formed inside a subsea production plant or within a subsea pipeline network. These hydrates could induce serious damages by blocking the flow of subsea fluids. In this study, a simulation technology, which can visualize the system configuration of subsea production processes and can simulate stable flow of fluids, was introduced. Most existing subsea simulations have performed the analysis of dynamic behaviors for the installation of subsea facilities or the flow analysis of multiphase flow within pipes. The above studies occupy extensive research areas of the subsea field. In this study, with the goal of simulating the configuration of an entire deep sea production system compared to existing studies, a DES-based simulation technology, which can logically simulate oil production processes in the deep sea, was analyzed, and an implementation example of a simplified case was introduced.

User's Emotion Modeling on Dynamic Narrative Structure : towards of Film and Game (동적 내러티브 구조에 대한 사용자 감정모델링 : 영화와 게임을 중심으로)

  • Kim, Mi-Jin;Kim, Jae-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.1
    • /
    • pp.103-111
    • /
    • 2012
  • This paper is a basic study for making a system that can predict the success and failure of entertainment contents at the initial stage of production. It proposes the user's emotion modeling of dynamic narrative on entertainment contents. To make this possible, 1) dynamic narrative emotion model is proposed based on theoretical research of narrative structure and cognitive emotion model. 2) configuring the emotion types and emotion value, proposed model of three emotion parameter(desire, expectation, emotion type) are derived. 3)To measure user's emotion in each story event of dynamic narrative, cognitive behavior and description of user(film, game) is established. The earlier studies on the user research of conceptual, analytic approach is aimed of predicting on review of the media and user's attitude, and consequently these results is delineated purely descriptive. In contrast, this paper is proposed the method of user's emotion modeling on dynamic narrative. It would be able to contributed to the emotional evaluation of entertainment contents using specific information.

Fire Safety Analysis of Fire Suppression System for Aircraft Maintenance Hangar Using Fault Tree Method (Fault Tree를 활용한 항공기 격납고 소화시스템의 화재 안전성 분석)

  • Lee, Jong-Guk
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.67-73
    • /
    • 2017
  • An aircraft maintenance hangar is a building that stores, maintains, and inspects expensive aircraft. The frequency of fire occurrence is low, but the resulting human and material damage can be very serious. Therefore, in this study, we conducted a qualitative analysis of the fire safety of the currently operating fire suppression systems for aircraft maintenance hangars using the Fault Tree method, and then performed a quantitative analysis using the failure rate data for the derived basic events and analyzed the importance of the minimal cut sets. As a result of the qualitative analysis by the minimal cut set, it was found that there were 14 accident paths that could be expanded to a large fire, due to the fire control failure of the aircraft hangar fire suppression system. The quantitative analysis revealed that, the probability of the fire expanding into a large one is $2.08{\times}E-05/day$. The analysis of the importance of the minimal cut set shows that four minimal cut sets, namely the fire detector and foam head action according to the zone and blocking of the foam by the aircraft wing and the fire plume, had the same likelihood of causing the fire to develop into a large one, viz. 24.95% each, which together forms the majority of the likelihood. It was confirmed for the first time by fault tree method that the fire suppression system of aircraft maintenance hangars is not suitable for fires under the aircraft wings and needs to be improved.

Analysis of the Controlling Factors of an Urban-type Landslide at Hwangryeong Mountain Based on Tree Growth Patterns and Geomorphology (부산 황령산에서의 수목 성장 및 지형 특성을 이용한 도시 산사태의 발생원인 분석)

  • Choi, Jin-Hyuck;Kim, Hyun-Tae;Oh, Jae-Yong;Kim, Young-Seog
    • The Journal of Engineering Geology
    • /
    • v.21 no.4
    • /
    • pp.281-293
    • /
    • 2011
  • We investigated the causes and characteristics of a landslide at Hwangryeong Mountain, Busan, based on aerial photos, annual precipitation data, rock fracture patterns, and geomorphic features using GIS Software, and a statistical analysis of tilted trees. The analyzed slope shows evidence of a previous slope failure event and the possibility of future failures. Although the NW-SE trending slope was relatively stable until 1975, a large-scale slope failure occurred between 1975 and 1985 due to complex factors, including favorably oriented geologic structures, human activity, and heavy rain. This indicates that a detailed study of geologic structures, slope stability, and rainfall characteristics is important for slope cuttings that could be a major factor and cause of urban landsliding events. The statistic analysis of tilted trees shows a slow progressive creeping type of mass wasting with rock falls oblique to the dip of the slope, with the slope having moved towards the west since 1985. A concentration of tree tilting has developed on the northwestern part of the slope, which could reach critical levels in the future. The analysis of deformed trees is a useful tool for understanding landslides and for predicting and preventing future landslide events.

Impact of antimicrobial resistance in the $21^{st}$ century

  • Song, Jae-Hoon
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.04a
    • /
    • pp.3-6
    • /
    • 2000
  • Antimicrobial resistance has been a well-recognized problem ever since the introduction of penicillin into clinical use. History of antimicrobial development can be categorized based on the major antibiotics that had been developed against emerging resistant $pathogens^1$. In the first period from 1940 to 1960, penicillin was a dominating antibiotic called as a "magic bullet", although S.aureus armed with penicillinase led antimicrobial era to the second period in 1960s and 1970s. The second stage was characterized by broad-spectrum penicillins and early generation cephalosporins. During this period, nosocomial infections due to gram-negative bacilli became more prevalent, while those caused by S.aureus declined. A variety of new antimicrobial agents with distinct mechanism of action including new generation cephalosporins, monobactams, carbapenems, ${\beta}$-lactamase inhibitors, and quinolones characterized the third period from 1980s to 1990s. However, extensive use of wide variety of antibiotics in the community and hospitals has fueled the crisis in emerging antimicrobial resistance. Newly appeared drug-resistant Streptococcus pneumoniae (DRSP), vancomycin-resistant enterococci (VRE), extended-spectrum ${\beta}$-lactamase-producing Klebsiella, and VRSA have posed a serious threat in many parts of the world. Given the recent epidemiology of antimicrobial resistance and its clinical impact, there is no greater challenge related to emerging infections than the emergence of antibiotic resistance. Problems of antimicrobial resistance can be amplified by the fact that resistant clones or genes can spread within or between the species as well as to geographically distant areas which leads to a global concern$^2$. Antimicrobial resistance is primarily generated and promoted by increased use of antimicrobial agents. Unfortunately, as many as 50 % of prescriptions for antibiotics are reported to be inappropriate$^3$. Injudicious use of antibiotics even for viral upper respiratory infections is a universal phenomenon in every part of the world. The use of large quantities of antibiotics in the animal health industry and farming is another major factor contributing to selection of antibiotic resistance. In addition to these background factors, the tremendous increase in the immunocompromised hosts, popular use of invasive medical interventions, and increase in travel and mixing of human populations are contributing to the resurgence and spread of antimicrobial resistance$^4$. Antimicrobial resistance has critical impact on modem medicine both in clinical and economic aspect. Patients with previously treatable infections may have fatal outcome due to therapeutic failure that is unusual event no more. The potential economic impact of antimicrobial resistance is actually uncountable. With the increase in the problems of resistant organisms in the 21st century, however, additional health care costs for this problem must be enormously increasing.

  • PDF

Developing Maker Competency Model and Exploring Maker Education Plan in the Field of Elementary and Secondary Education (메이커 역량 모델 개발 및 초·중등 교육 현장에서의 메이커 교육 방안 탐색)

  • Yoon, Jihyun;Kim, Kyung;Kang, Seong-Joo
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.5
    • /
    • pp.649-665
    • /
    • 2018
  • In this study, we extracted the core competencies of makers through the analysis of critical incident technique and behavioral event interview to explore the nature and attributes of maker education, and then we developed a maker competency model based on these core competencies. As a result, six competency groups and 23 sub-competencies were extracted. In other words, we were able to confirm the existence of integrated thinking competency group consisting of four competencies made up of 'analytic thinking', 'intuitive thinking', 'visual thinking', and 'empirical thinking' and that of collaborative competency group with four competencies of 'sharing', 'communication', 'conflict management', and 'scrupulosity'. In addition, we could also confirm the existence of making mind competency group, which is composed of four competencies namely 'interest in various areas', 'challenge consciousness', 'failure management', and 'pleasure of the making process'. We could also confirm that human-centered competence group consisting of two competencies of 'humanity' and 'user-oriented' and the problem-finding competence group consisting of two competencies of 'observation' and 'recognition of discomfort in daily life'. Lastly, the making practice competency group is composed of seven competencies: 'understanding making tool', 'understanding electricity', 'understanding programming', 'planning', 'hand knowledge', 'information search', and 'direct execution'. We discussed educational implications of these findings.