• Title/Summary/Keyword: Human errors

Search Result 729, Processing Time 0.029 seconds

ACCURACY TESTS OF 3D RAPID PROTOTYPING (RP) MEDICAL MODELS: ITS POTENTIAL AND CLINICAL APPLICATIONS (Rapid Prototyping으로 제작한 3D Medical Model의 오차 측정에 관한 연구 (임상 적용 가능성 및 사례))

  • Choi, Jin-Young;Choi, Jung-Ho;Kim, Nam-Kuk;Lee, Jong-Ki;Kim, Myeng-Ki;Kim, Myung-Jin;Kim, Yeong-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.25 no.4
    • /
    • pp.295-303
    • /
    • 1999
  • Presented in this paper are the experimental results that measure rapid prototyping (RP) errors in 3D medical models. We identified various factors that can cause dimensional errors when producing RP models, specifically in maxillofacial areas. For the experiment, we used a human dry skull. A number of linear measurements based on landmarks were first obtained on the skull. This was followed by CT scanning, 3D model reconstruction, and RP model fabrication. The landmarks were measured again on both the reconstructed models and the physical RP models, and these were compared with those on dry skull. We focused on major sources of errors, such as CT scanning, conversion from CT data to STL models, and RP model fabrication. The results show that the overall error from skull to RP is $0.64{\times}0.36mm(0.71{\times}0.66%)$ in absolute value. This indicates that the RP technology can be acceptable in the real clinical applications. A clinical case that has applied RP models successfully for treatment planning and surgical rehearsal is presented. Although the use of RP models is rare in the medical area yet, we believe RP is promising in that it has a great potential in developing new tools which can aid diagnosis, treatment planning, surgical rehearsal, education, and so on.

  • PDF

Effects of Korean Red Ginseng on White Matter Microstructure and Cognitive Functions : A Focus on Intrusion Errors (고려 홍삼이 대뇌 백질 미세구조 및 인지기능에 미치는 효과 : 침입 오류를 중심으로)

  • Jeong, Hyeonseok S.;Kim, Young Hoon;Lee, Sunho;Yeom, Arim;Kang, Ilhyang;Kim, Jieun E.;Lee, Junghyun H.;Ban, Soonhyun;Lim, Soo Mee;Lee, Sun Hea
    • Korean Journal of Biological Psychiatry
    • /
    • v.22 no.2
    • /
    • pp.78-86
    • /
    • 2015
  • Objectives Although ginseng has been reported to protect neuronal cells and improve various cognitive functions, relationship between ginseng supplementation and response inhibition, one of the important cognitive domains has not been explored. In addition, effects of ginseng on in vivo human brain have not been investigated using the diffusion tensor imaging (DTI). The purpose of the current study is to investigate changes in intrusion errors and white matter microstructure after Korean Red Ginseng supplementation using standardized neuropsychological tests and DTI. Methods Fifty-one healthy participants were randomly allocated to the Korean Red Ginseng (n = 26) or placebo (n = 25) groups for 8 weeks. The California Verbal Learning Test was used to assess the number of intrusion errors. Intelligence quotient (IQ) was measured with the Korean Wechsler Adult Intelligence Scale. Depressive and anxiety symptoms were evaluated using Hamilton Depression Rating Scale, Hamilton Anxiety Rating Scale, and Hopkins Symptom Checklist-25. The fractional anisotropy (FA) was measured from the brain DTI data. Results After the 8-week intervention, Korean Red Ginseng supplementation significantly reduced intrusion errors after adjusting age, sex, IQ, and baseline score of the intrusion errors (p for interaction = 0.005). Change in FA values in the left anterior corona radiata was greater in the Korean Red Ginseng group compared to the placebo group (t = 4.29, p = 0.04). Conclusions Korean Red Ginseng supplementation may be efficacious for improving response inhibition and white matter microstructure integrity in the prefrontal cortex.

Effects of Forest Healing Programs Using School Forests on Language Acquisition and Ego-resilience of Multicultural Background Students (학교 숲을 활용한 산림치유프로그램 활동이 다문화배경 학생들의 언어습득 향상과 자아탄력성에 미치는 영향)

  • Jang, Cheoul-Soon;Shin, Chang-Seob;Jang, Byung-Soon;Sharif, Md. Omar
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.3
    • /
    • pp.333-340
    • /
    • 2019
  • As the number of students in the multicultural background grows, the interest in their education is also increasing. The purpose of this study is to investigate the effect of forest healing factors on the improvement of language ability and ego-resilience of students from multicultural families. We conducted an after-school forest healing program of ten male and ten female middle school students of a multicultural preparatory school located in ${\bigcirc}{\bigcirc}$-dong in Cheongju, Chungnam Province. The experiment consisted of a total of 12 weekly one-hour (60 minutes) programs from April 12, 2018 to June 26, 2018. The forest healing program is an activity that uses the various environmental factors that exist in the forest to increase the immunity of the human body and restore physical and mental health. To determine the difference in ego-resilience before and after the program, we conducted a paired t-test and analyzed with the SPSS 18.0 program. The results showed that the ego-resilience significantly improved in all sub-factors including the positive thinking ability, problem-solving ability, intimacy ability, emotional adjustment ability, and autonomic behavior ability (p<.001). The descriptive statistics of the language ability showed the improvement in writing errors, pronunciation errors, sentence errors, tense errors, and errors in research and connection. We expect the results of this study can be used as the basic data to improve ego-resilience and language acquisition ability of middle-entry children and students from multicultural families.

An Analysis on Incident Cases of Dynamic Positioning Vessels (Dynamic Positioning 선박들의 사고사례 분석)

  • Chae, Chong-Ju;Jung, Yun-Chul
    • Journal of Navigation and Port Research
    • /
    • v.39 no.3
    • /
    • pp.149-156
    • /
    • 2015
  • The Dynamic Positioning System consists of 7 elements which are namely Power system, Human machine interface, DP Computer, Position Reference System(PRS), Sensors, Thruster system and DP Operator. Incidents like loss of position(LOP) on DP vessel usually occur due to errors in these 7 elements. The purpose of this study is to find out safety operation method of DP vessel through qualitative and quantitative analyze of DP LOP incidents which are submitted to IMCA every year. The 612 DP LOP incidents submitted from 2001 to 2010 were analyzed to find out the main cause of the incidents and its rate among other causes. Consequently, the highest rate of incidents involving DP elements are PRS errors. DP computer, Power system, Human error and thruster system came next. The PRS has been analyzed and a flowchart was drawn through expert brainstorming. Also, the conditional probability has been analyzed through Bayesian Networks based on this flowchart. Consequentially, the main causes of drive off incidents were DGPS, microwave radar and HPR. Also, this study identified the main causes of DGPS errors through Bayesian Networks. These causes are signal blocked, electric components failure, relative mode error, signal weak or fail.

Safety of Workers in Indian Mines: Study, Analysis, and Prediction

  • Verma, Shikha;Chaudhari, Sharad
    • Safety and Health at Work
    • /
    • v.8 no.3
    • /
    • pp.267-275
    • /
    • 2017
  • Background: The mining industry is known worldwide for its highly risky and hazardous working environment. Technological advancement in ore extraction techniques for proliferation of production levels has caused further concern for safety in this industry. Research so far in the area of safety has revealed that the majority of incidents in hazardous industry take place because of human error, the control of which would enhance safety levels in working sites to a considerable extent. Methods: The present work focuses upon the analysis of human factors such as unsafe acts, preconditions for unsafe acts, unsafe leadership, and organizational influences. A modified human factor analysis and classification system (HFACS) was adopted and an accident predictive fuzzy reasoning approach (FRA)-based system was developed to predict the likelihood of accidents for manganese mines in India, using analysis of factors such as age, experience of worker, shift of work, etc. Results: The outcome of the analysis indicated that skill-based errors are most critical and require immediate attention for mitigation. The FRA-based accident prediction system developed gives an outcome as an indicative risk score associated with the identified accident-prone situation, based upon which a suitable plan for mitigation can be developed. Conclusion: Unsafe acts of the worker are the most critical human factors identified to be controlled on priority basis. A significant association of factors (namely age, experience of the worker, and shift of work) with unsafe acts performed by the operator is identified based upon which the FRA-based accident prediction model is proposed.

Pattern Development using the Curvature Plot of 3D Human Scan Data (3차원 인체의 곡률분포를 이용한 패턴 전개)

  • Jeong, Yeon-Hee;Hong, Kyung-Hi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.9
    • /
    • pp.1478-1486
    • /
    • 2008
  • The human body composed of concave and convex curvatures, and the current 3D scanning technology which involves inherent measurement errors make it difficult to extract distinct curvature plot directly. In this study, a method of extracting the clear curvature plot and its application to the cycling pants design were proposed. We have developed the ergonomic pattern from the 3D human body reflecting cycling posture. For the ergonomic design line on the 3D human body, the 3D information on the lower part of four male bodies with flexed posture was analyzed. The 3D scan data of four subjects were obtained using Cyberware. As results, the iteration of the tessellated shell was executed 100 times to obtain optimized curvature plots of the muscles on the body surface, and the boundaries of the curvature plots were applied to the design lines. Maximum(Max-pattern) and mean curvature plots(Mean-pattern) were adopted in the design line of the cycling pants, and performance of those lines was compared with that of conventional princess line(Con-pattern). The average error of total area and length in the 2D pattern developed from the 3D flexed body surface in this study were very minimal($4.58cm^2$(0.19%) and 0.15mm(0.46%)), which was within the range of tolerable limits in clothing production. The pattern obtained from the flexed body reflecting cycling posture already included the contraction and extension of the cycling skin, so that the extra ease for movement and good fit was not need to be considered.

Evaluation of Target Position's Accuracy in 2D-3D Matching using Rando Phantom (인체팬톰을 이용한 2D-3D 정합시 타켓위치의 정확성 평가)

  • Jang, Eun-Sung;Kang, Soo-Man;Lee, Chul-Soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.21 no.1
    • /
    • pp.33-39
    • /
    • 2009
  • Purpose: The aim of this study is to compare patient's body posture and its position at the time of simulation with one at the treatment room using On-board Imaging (OBI) and CT (CBCT). The detected offsets are compared with position errors of Rando Phantom that are practically applied. After that, Rando Phantom's position is selected by moving couch based on detected deviations. In addition, the errors between real measured values of Rando Phantom position and theoretical ones is compared. And we will evaluate target position's accuracy of KV X-ray imaging's 2D and CBCT's 3D one. Materials and Methods: Using the Rando Phantom (Alderson Research Laboratories Inc. Stanford. CT, USA) which simulated human body's internal structure, we will set up Rando Phantom on the treatment couch after implementing simulation and RTP according to the same ways as the real radioactive treatment. We tested Rando Phantom that are assumed to have accurate position with different 3 methods. We measured setup errors on the axis of X, Y and Z, and got mean standard deviation errors by repeating tests 10 times on each tests. Results: The difference between mean detection error and standard deviation are as follows; lateral 0.4+/-0.3 mm, longitudinal 0.6+/-0.5 mm, vertical 0.4+/-0.2 mm which all within 0~10 mm. The couch shift variable after positioning that are comparable to residual errors are 0.3+/-0.1, 0.5+/-0.1, and 0.3+/-0.1 mm. The mean detection errors by longitudinal shift between 20~40 mm are 0.4+/-0.3 in lateral, 0.6+/-0.5 in longitudinal, 0.5+/-0.3 in vertical direction. The detection errors are all within range of 0.3~0.5 mm. Residual errors are within 0.2~0.5 mm. Each values are mean values based on 3 tests. Conclusion: Phantom is based on treatment couch shift and error within the average 5mm can be gained by the diminution detected by image registration based on OBI and CBCT. Therefore, the selection of target position which depends on OBI and CBCT could be considered as useful.

  • PDF

Evaluation of Predicted Driving Postures in RAMSIS Digital Human Model Simulation (Digital Human Model Simulation을 위한 RAMSIS 추정 운전자세의 정합성 평가 및 개선)

  • Park, Jang-Woon;Jung, Ki-Hyo;Chang, Joon-Ho;Kwon, Jeong-Ung;You, Hee-Cheon
    • IE interfaces
    • /
    • v.23 no.2
    • /
    • pp.100-107
    • /
    • 2010
  • For proper ergonomic evaluation using a digital human model simulation (DHMS) system such as $RAMSIS^{(R)}$, the postures of humanoids for designated tasks need to be predicted accurately. The present study (1) evaluated the accuracy of driving postures of humanoids predicted by RAMSIS, (2) proposed a method to improve its accuracy, and (3) examined the effectiveness of the proposed method. The driving postures of 12 participants in a seating buck were measured by a motion capture system and compared with their corresponding postures predicted by RAMSIS. Significant discrepancies ($8.7^{\circ}$ to $74.9^{\circ}$) between predicted and measured postures were observed for different body parts and driving tasks. Two methods (constraints addition and user-defined posture) were proposed and their effects on posture estimation accuracy were examined. Of the two proposed methods, the user-defined posture method was found preferred, reducing posture estimation errors by 11.5% to 84.9%. Both the posture prediction accuracy assessment protocol and user-defined posture method would be of use for practitioners to improve the accuracy of predicted postures of humanoids in virtual environments.

Acquisition of Geographic Information in North Korea Using High Resolution Satellite Image (고해상도 위성영상을 이용한 북한지역 지리정보 구축 실험연구)

  • SaGong, Hosang;Han, Sun-Hee;Park, Jin-Hyeong;Seo, Ki-Hwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.4
    • /
    • pp.46-56
    • /
    • 2004
  • As economic cooperation and exchanges between North and South Korea have been glowing much more than before, the demand for geographic information on North Korea is recently increasing. In fact, there is no specific method to be provided with geographic information on North Korea. In this regard, the study searched a method to collect geographic information on North Korea by using the high spatial resolution satellite image. In order to produce its best result, the study collected the geographic information on the case study area and ensured the location accuracy. This study produced total 52 items of geographic information on North Korea. Horizontal and vertical errors of stereo image, which are 4.6m and 0.9m respectively, showed high accuracy. In addition, even though the horizontal error of single image is 9m, which is bigger than that of stereo image, there is no doubt that it can be used as basic data for North Korean studies and related projects.

  • PDF

Measurement of inconvenience, human errors, and mental workload of simulated nuclear power plant control operations

  • Oh, I.S.;Sim, B.S.;Lee, H.C.;Lee, D.H.
    • Proceedings of the ESK Conference
    • /
    • 1996.10a
    • /
    • pp.47-55
    • /
    • 1996
  • This study developed a comprehensive and easily applicable nuclear reactor control system evaluation method using reactor operators behavioral and mental workload database. A proposed control panel design cycle consists of the 5 steps: (1) finding out inconvenient, erroneous, and mentally stressful factors for the proposed design through evaluative experiments, (2) drafting improved design alternatives considering detective factors found out in the step (1), (3) comparative experiements for the design alternatives, (4) selecting a best design alternative, (5) returning to the step (1) and repeating the design cycle. Reactor operators behavioral and mental workload database collected from evaluative experiments in the step (1) and comparative experiments in the step (3) of the design cycle have a key roll in finding out defective factors and yielding the criteria for selection of the proposed reactor control systems. The behavioral database was designed to include the major informations about reactor operators' control behaviors: beginning time of operations, involved displays, classification of observational behaviors, dehaviors, decisions, involved control devices, classification of control behaviors, communications, emotional status, opinions for man-machine interface, and system event log. The database for mental workload scored from various physiological variables-EEG, EOG, ECG, and respir- ation pattern-was developed to indicate the most stressful situation during reactor control operations and to give hints for defective design factors. An experimental test for the evaluation method applied to the Compact Nuclear Simulator (CNS) installed in Korea Atomic Energy Research Institute (KAERI) suggested that some defective design factors of analog indicators should be improved and that automatization of power control to a target level would give relaxation to the subject operators in stressful situation.

  • PDF