• 제목/요약/키워드: Human error analysis

검색결과 553건 처리시간 0.023초

국내 헬리콥터 조종사 인적오류 사고 분류 및 분석 (Classification and Analysis of Human Error Accidents of Helicopter Pilots in Korea)

  • 유태정;권영국;송병흠
    • 한국항공운항학회지
    • /
    • 제28권4호
    • /
    • pp.21-31
    • /
    • 2020
  • There are two to three helicopter accidents every year in Korea, representing 5.7 deaths per 100,000 flights. In this study, an analysis was conducted on helicopter accidents that occurred in Korea from 2005 to 2017. The accident analysis was based on the aircraft accident and incident report published by the Aircraft and Railway Accident Investigation Board. This Research analyzed the characteristics of accidents occurring in Korea caused by human error by pilots. Accident analysis was done by classifying the organization, flight mission, aircraft class, flight stage, accident cause, etc. Pilot's huan error was classified as Skill-based error, decision error and perceptual error in accordance with the HFACS taxonomy. The accidents caused by pilot's human error were classified into five categories: powerlines collision, loss of control, fuel exhaustion, unstable approach to reservoir, and elimination of tail rotor.

원자력발전소 오류분석을 위한 직무분석 방법의 개발 및 직무유형 분류 (Development of a Task Analysis Method and Classification of Emergency Tasks for Human Error Analysis in Nuclear Power Plants)

  • 정원대;박진균;김재환
    • 한국안전학회지
    • /
    • 제16권4호
    • /
    • pp.168-174
    • /
    • 2001
  • For human error analysis, the structure and situation of a task should be analyzed in advance. The paper introduces Structured Information Analysis (SIA) as a task analysis method for error analysis, and delineates the result of application on the emergency procedure of Korean Standard Nuclear Plants (KSNPs). From the task analysis about emergency procedure of KSNP, total 72 specific task goals were identified in the level of system function, and 86 generic tasks were classified from the viewpoint of physical sameness of the task description. Human errors are dependent on task types so that the result of task analysis would be used as a basis for the error analysis on the emergency tasks in nuclear power plants.

  • PDF

철도사고 인적오류 분석을 위한 지원시스템 프레임웍 설계 (A Framework for Computerized Human Error Analysis System - Focused on the Railway Industry)

  • 신민주;백동현;김동산;윤완철
    • 대한인간공학회지
    • /
    • 제27권3호
    • /
    • pp.43-52
    • /
    • 2008
  • Human errors are now considered as the most significant source of accidents or incidents in large-scale systems such as aircraft, vessels, railway, and nuclear power plants. As 61% of the train accidents in Korea railway involving collisions, derailments and fires were caused by human errors, there is a strong need for a systematic research that can help to prevent human errors. Although domestic railway operating companies use a variety of methods for analyzing human errors, there is much room for improvement. Especially, because most of them are based on written papers, there is a definite need for a well-developed computerized system supporting human error analyzing tasks. The purpose of this study is to propose a framework for a computerized human error analysis system focused on the railway industry on the basis of human error analysis mechanism. The proposed framework consists of human error analysis (HEA) module, similar accident tracking (SAT) module, cause factor recommendation (CFR) module, cause factor management (CFM) module, and statistics (ST) module.

Comparative Evaluation of Three Cognitive Error Analysis Methods Through an Application to Accident Management Tasks in NPPs

  • Wondea Jung;Kim, Jaewhan;Jaejoo Ha;Wan C. Yoon
    • Nuclear Engineering and Technology
    • /
    • 제31권6호
    • /
    • pp.8-22
    • /
    • 1999
  • This study was performed to comparatively evaluate selected Human Reliability Analysis (HRA) methods which mainly focus on cognitive error analysis, and to derive the requirement of a new human error analysis (HEA) framework for Accident Management (AM) in Nuclear Power Plants (NPPs). In order to achieve this goal, we carried out a case study of human error analysis on an AM task in NPPs. In the study we evaluated three cognitive HEA methods, HRMS, CREAM and PHECA, which were selected through the review of the currently available seven cognitive HEA methods. The task of reactor cavity flooding was chosen for the application study as one of typical tasks of AM in NPPs. From the study, we derived seven requirement items for a new HEA method of AM in NPPs. We could also evaluate the applicability of three cognitive HEA methods to AM tasks. CREAM is considered to be more appropriate than others for the analysis of AM tasks, HRMS is also applicable to the error analysis of AM tasks. But, PHECA is regarded less appropriate for the predictive HEA technique as well as for the analysis of AM tasks. In addition to these, the advantages and disadvantagesofeachmethodaredescribed.

  • PDF

에러 분석을 통한 사용자 중심의 메뉴 기반 인터페이스 설계 (Design of Menu Driven Interface using Error Analysis)

  • 한상윤;명노해
    • 대한인간공학회지
    • /
    • 제23권4호
    • /
    • pp.9-21
    • /
    • 2004
  • As menu structure of household appliance is complicated, user's cognitive workload frequently occurs errors. In existing studies, errors didn't present that interpretation for cognitive factors and alternatives, but are only considered as statistical frequency. Therefore, error classification and analysis in tasks is inevitable in usability evaluation. This study classified human error throughout information process model and navigation behavior. Human error is defined as incorrect decision and behavior reducing performance. And navigation is defined as unrelated behavior with target item searching. We searched and analyzed human errors and its causes as a case study, using mobile phone which could control appliances in near future. In this study, semantic problems in menu structure were elicited by SAT. Scenarios were constructed by those. Error analysis tests were performed twice to search and analyze errors. In 1st prototype test, we searched errors occurred in process of each scenario. Menu structure was revised to be based on results of error analysis. Henceforth, 2nd Prototype test was performed to compare with 1st. Error analysis method could detect not only mistakes, problems occurred by semantic structure, but also slips by physical structure. These results can be applied to analyze cognitive causes of human errors and to solve their problems in menu structure of electronic products.

SHERPA기법을 이용한 항공기 착륙상황에서 발생 가능한 인적오류 예측 (Predicting Human Errors in Landing Situations of Aircraft by Using SHERPA)

  • 최재림;한혁재;함동한
    • 한국항공운항학회지
    • /
    • 제29권2호
    • /
    • pp.14-24
    • /
    • 2021
  • This study aims to examine probable human errors when landing an airplane by the use of SHERPA(systematic human error reduction and prediction approach) and propose methods for preventing the predictive human errors. It has been reported that human errors are concerned with a lot of accidents or incidents of an airplane. It is significant to predict presumable human errors, particularly in the operation mode of human-automation interaction, and attempt to reduce the likelihood of predicted human error. By referring to task procedures and interviewing domain experts, we analyzed airplane landing task by using HTA(hierarchical task analysis) method. In total, 6 sub-tasks and 19 operations were identified from the task analysis. SHERPA method was used for predicting probable human error types for each task. As a result, we identified 31 human errors and predicted their occurrence probability and criticality. Based on them, we suggested a set of methods for minimizing the probability of the predicted human errors. From this study, it can be said that SHERPA can be effectively used for predicting probable human error types in the context of human-automation interaction needed for navigating an airplane.

반도체 산업에서의 인적오류에 대한 인적요인과 과오에 대한 분석 (An Analysis of Human Factor and Error for Human Error of the Semiconductor Industry)

  • 윤용구;박범
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2007년도 춘계학술대회
    • /
    • pp.113-123
    • /
    • 2007
  • Through so that accident of semiconductor industry deduces unsafe factor of the person center on unsafe behaviour that incident history and questionnaire and I made starting point that extract very important factor. It served as a momentum that make up base that analyzes factors that happen based on factor that extract factor cause classification for the first factor, the second factor and the third factor and presents model of human error. Factor for whole defines factor component for human factor and to cause analysis 1 stage in human factor and step that wish to do access of problem and it do analysis cause of data of 1 step. Also, see significant difference that analyzes interrelation between leading persons about human mistake in semiconductor industry and connect interrelation of mistake by this. Continuously, dictionary road map to human error theoretical background to basis traditional accidental cause model and modern accident cause model and leading persons. I wish to present model and new model in semiconductor industry by backbone that leading persons of existing scholars who present model of existent human error deduce relation. Finally, I wish to deduce backbone of model of pre-suppression about accident leading person of the person center.

  • PDF

항공교통관제사의 휴먼에러에 기인한 국내외 항공기 사고 사례연구 - TEM(Threat & Error Management) 분석법을 적용하여 - (A Case Study on Aircraft Accidents Due to Air Traffic Controller's Human Error - Applying TEM (Threat & Error Management) Analysis -)

  • 김정빈;박성식
    • 한국항공운항학회지
    • /
    • 제29권4호
    • /
    • pp.124-133
    • /
    • 2021
  • The airline industry has been growing steadily since 2016 with more than 100 million air passengers, renewing the largest number of air passengers every year. Increasing air demand leads to an increase in air traffic in limited airspace, increasing the likelihood of accidents between aircraft. Due to the massive human and material damage caused by a single mistake, aviation safety is being heavily focused around the world to efficiently use limited airspace. Studies related to various human factors are underway as most of the aviation accidents are found to be caused by human factors, but research on human factors by controllers is insufficient while they are active in terms of control and operation. Given that 82% of air accidents caused by controllers are caused by human error, the importance of management of human error and changes in perception are urgently needed. This study aims to understand the seriousness of the controller's human error by analyzing the accident cases caused by the controller's human error using TEM to identify threats and errors and derive common human factors.

퍼지모델을 이용한 인적오류확률의 타당성 검증 (A Validity Verification of Human Error Probability using a Fuzzy Model)

  • 장통일;이용희;임현교
    • 한국안전학회지
    • /
    • 제21권3호
    • /
    • pp.137-142
    • /
    • 2006
  • Quantification of error possibility, in an HRA process, should be performed so that the result of the qualitative analysis can be utilized in other areas in conjunction with overall safety estimation results. And also, the quantification is an essential process to analyze the error possibility in detail and to obtain countermeasures for the errors through screening procedures. In previous studies for the quantification of error possibility, nominal values were assigned by the experts' judgements and utilized as corresponding probabilities. The values assigned by experts' experiences and judgements, however, require verifications on their reliability. In this study, the validity of new error possibility values in new MCR design was verified by using the Onisawa's model which utilizes fuzzy linguistic values to estimate human error probabilities. With the model of error probabilities are represented as analyst's estimations and natural language expression instead of numerical values. As results, the experts' estimation values about error probabilities are well agreed to the existing error probability estimation model. Thus, it was concluded that the occurrence probabilities of errors derived from the human error analysis process can be assessed by nominal values suggested in the previous studies. It is also expected that our analysis method can supplement the conventional HRA method because the nominal values are based on the consideration of various influencing factors such as PSFs.

A classification of electrical component failures and their human error types in South Korean NPPs during last 10 years

  • Cho, Won Chul;Ahn, Tae Ho
    • Nuclear Engineering and Technology
    • /
    • 제51권3호
    • /
    • pp.709-718
    • /
    • 2019
  • The international nuclear industry has undergone a lot of changes since the Fukushima, Chernobyl and TMI nuclear power plant accidents. However, there are still large and small component deficiencies at nuclear power plants in the world. There are many causes of electrical equipment defects. There are also factors that cause component failures due to human errors. This paper analyzed the root causes of failure and types of human error in 300 cases of electrical component failures. We analyzed the operating experience of electrical components by methods of root causes in K-HPES (Korean-version of Human Performance Enhancement System) and by methods of human error types in HuRAM+ (Human error-Related event root cause Analysis Method Plus). As a result of analysis, the most electrical component failures appeared as circuit breakers and emergency generators. The major causes of failure showed deterioration and contact failure of electrical components by human error of operations management. The causes of direct failure were due to aged components. Types of human error affecting the causes of electrical equipment failure are as follows. The human error type group I showed that errors of commission (EOC) were 97%, the human error type group II showed that slip/lapse errors were 74%, and the human error type group III showed that latent errors were 95%. This paper is meaningful in that we have approached the causes of electrical equipment failures from a comprehensive human error perspective and found a countermeasure against the root cause. This study will help human performance enhancement in nuclear power plants. However, this paper has done a lot of research on improving human performance in the maintenance field rather than in the design and construction stages. In the future, continuous research on types of human error and prevention measures in the design and construction sector will be required.